[1] Arhangel'skii, A. V.:
$D$-spaces and covering properties. Topology Appl. 146-147 (2005), 437-449.
MR 2107163 |
Zbl 1063.54013
[3] Arhangel'skii, A. V.:
A generic theorem in the theory of cardinal invariants of topological spaces. Commentat. Math. Univ. Carol. 36 (1995), 303-325.
MR 1357532
[4] Arhangel'skii, A. V., Buzyakova, R. Z.:
Addition theorems and D-spaces. Commentat. Math. Univ. Carol. 43 (2002), 653-663.
MR 2045787 |
Zbl 1090.54017
[7] Burke, D. K.:
Weak-bases and $D$-spaces. Commentat. Math. Univ. Carol. 48 (2007), 281-289.
MR 2338096 |
Zbl 1199.54065
[8] Buzyakova, R. Z.:
On $D$-property of strong $\Sigma$-spaces. Commentat. Math. Univ. Carol. 43 (2002), 493-495.
MR 1920524 |
Zbl 1090.54018
[10] Engelking, R.:
General Topology. Sigma Series in Pure Mathematics, Vol. 6, revised ed. Heldermann Berlin (1989).
MR 1039321
[12] Gruenhage, G.:
Generalized Metric Spaces. In: Handbook of Set-Theoretic Topology K. Kunen, J. E. Vaughan North-Holland Amsterdam (1984), 423-501.
MR 0776629 |
Zbl 0555.54015
[13] Gruenhage, G.: Submeta-Lindelöf implies transitively $D$. Preprint.
[16] Guo, H. F., Junnila, H.:
On spaces which are linearly $D$. Topology Appl. 157 (2010), 102-107.
MR 2556084 |
Zbl 1180.54009
[18] Lin, S.:
Point-Countable Covers and Sequence-Covering Mappings. Chinese Science Press Beijing (2002), Chinese.
MR 1939779 |
Zbl 1004.54001
[20] Pearl, E.:
Linearly Lindelöf problems. In: Open Problems in Topology II E. Pearl Elsevier Amsterdam (2007), 225-231.
MR 2367385
[21] Peng, L.-X.:
On spaces which are $D$, linearly $D$ and transitively $D$. Topology Appl. 157 (2010), 378-384.
MR 2563288 |
Zbl 1179.54035
[24] Peng, L.-X.:
A special point-countable family that makes a space to be a $D$-space. Adv. Math. (China) 37 (2008), 724-728.
MR 2569541
[26] Peng, L.-X.:
On weakly monotonically monolithic spaces. Commentat. Math. Univ. Carol. 51 (2010), 133-142.
MR 2666085 |
Zbl 1224.54078
[27] Peng, L.-X.: A note on transitively $D$ and $D$-spaces. Houston J. Math (to appear).
[28] Peng, L.-X., Tall, Franklin D.:
A note on linearly Lindelöf spaces and dual properties. Topol. Proc. 32 (2008), 227-237.
MR 1500084 |
Zbl 1158.54008
[30] L. A. Steen, Jr. J. A. Seebach:
Counterexamples in Topology. 2nd edition. Springer New York-Heidelberg-Berlin (1978).
MR 0507446