Previous |  Up |  Next

Article

Keywords:
transitively $D$; sequential; discretely Lindelöf; $wcs^*$-network
Summary:
In this note, we show that if for any transitive neighborhood assignment $\phi $ for $X$ there is a point-countable refinement ${\mathcal F}$ such that for any non-closed subset $A$ of $X$ there is some $V\in {\mathcal F}$ such that $|V\cap A|\geq \omega $, then $X$ is transitively $D$. As a corollary, if $X$ is a sequential space and has a point-countable $wcs^*$-network then $X$ is transitively $D$, and hence if $X$ is a Hausdorff $k$-space and has a point-countable $k$-network, then $X$ is transitively $D$. We prove that if $X$ is a countably compact sequential space and has a point-countable $wcs^*$-network, then $X$ is compact. We point out that every discretely Lindelöf space is transitively $D$. Let $(X, \tau )$ be a space and let $(X, {\mathcal T})$ be a butterfly space over $(X, \tau )$. If $(X, \tau )$ is Fréchet and has a point-countable $wcs^*$-network (or is a hereditarily meta-Lindelöf space), then $(X, {\mathcal T})$ is a transitively $D$-space.
References:
[1] Arhangel'skii, A. V.: $D$-spaces and covering properties. Topology Appl. 146-147 (2005), 437-449. MR 2107163 | Zbl 1063.54013
[2] Arhangel'skii, A. V.: $D$-spaces and finite unions. Proc. Am. Math. Soc. 132 (2004), 2163-2170. DOI 10.1090/S0002-9939-04-07336-8 | MR 2053991 | Zbl 1045.54009
[3] Arhangel'skii, A. V.: A generic theorem in the theory of cardinal invariants of topological spaces. Commentat. Math. Univ. Carol. 36 (1995), 303-325. MR 1357532
[4] Arhangel'skii, A. V., Buzyakova, R. Z.: Addition theorems and D-spaces. Commentat. Math. Univ. Carol. 43 (2002), 653-663. MR 2045787 | Zbl 1090.54017
[5] Arhangel'skii, A. V., Buzyakova, R. Z.: On linearly Lindelöf and strongly discretely Lindelöf spaces. Proc. Am. Math. Soc. 127 (1999), 2449-2458. DOI 10.1090/S0002-9939-99-04783-8 | MR 1487356 | Zbl 0930.54003
[6] Borges, C. R., Wehrly, A. C.: A study of $D$-spaces. Topol. Proc. 16 (1991), 7-15. MR 1206448 | Zbl 0787.54023
[7] Burke, D. K.: Weak-bases and $D$-spaces. Commentat. Math. Univ. Carol. 48 (2007), 281-289. MR 2338096 | Zbl 1199.54065
[8] Buzyakova, R. Z.: On $D$-property of strong $\Sigma$-spaces. Commentat. Math. Univ. Carol. 43 (2002), 493-495. MR 1920524 | Zbl 1090.54018
[9] Douwen, E. K. van, Pfeffer, W. F.: Some properties of the Sorgenfrey line and related spaces. Pac. J. Math. 81 (1979), 371-377. DOI 10.2140/pjm.1979.81.371 | MR 0547605
[10] Engelking, R.: General Topology. Sigma Series in Pure Mathematics, Vol. 6, revised ed. Heldermann Berlin (1989). MR 1039321
[11] Gruenhage, G.: A note on $D$-spaces. Topology Appl. 153 (2006), 2229-2240. MR 2238727 | Zbl 1101.54029
[12] Gruenhage, G.: Generalized Metric Spaces. In: Handbook of Set-Theoretic Topology K. Kunen, J. E. Vaughan North-Holland Amsterdam (1984), 423-501. MR 0776629 | Zbl 0555.54015
[13] Gruenhage, G.: Submeta-Lindelöf implies transitively $D$. Preprint.
[14] Gruenhage, G., Michael, E., Tanaka, Y.: Spaces determined by point-countable covers. Pac. J. Math. 113 (1984), 303-332. DOI 10.2140/pjm.1984.113.303 | MR 0749538 | Zbl 0561.54016
[15] Gruenhage, G.: A survey of $D$-spaces. Contemporary Mathematics 533 L. Babinkostova American Mathematical Society Providence (2011), 13-28. DOI 10.1090/conm/533/10502 | MR 2777743 | Zbl 1217.54025
[16] Guo, H. F., Junnila, H.: On spaces which are linearly $D$. Topology Appl. 157 (2010), 102-107. MR 2556084 | Zbl 1180.54009
[17] Lin, S.: A note on $D$-spaces. Commentat. Math. Univ. Carol. 47 (2006), 313-316. MR 2241534 | Zbl 1150.54340
[18] Lin, S.: Point-Countable Covers and Sequence-Covering Mappings. Chinese Science Press Beijing (2002), Chinese. MR 1939779 | Zbl 1004.54001
[19] Lin, S., Tanaka, Y.: Point-countable $k$-networks, closed maps and related results. Topology Appl. 59 (1994), 79-86. DOI 10.1016/0166-8641(94)90101-5 | MR 1293119 | Zbl 0817.54025
[20] Pearl, E.: Linearly Lindelöf problems. In: Open Problems in Topology II E. Pearl Elsevier Amsterdam (2007), 225-231. MR 2367385
[21] Peng, L.-X.: On spaces which are $D$, linearly $D$ and transitively $D$. Topology Appl. 157 (2010), 378-384. MR 2563288 | Zbl 1179.54035
[22] Peng, L.-X.: The $D$-property of some Lindelöf spaces and related conclusions. Topology Appl. 154 (2007), 469-475. DOI 10.1016/j.topol.2006.06.003 | MR 2278697 | Zbl 1110.54014
[23] Peng, L.-X.: On linear neighborhood assignments and dually discrete spaces. Topology Appl. 155 (2008), 1867-1874. DOI 10.1016/j.topol.2008.06.005 | MR 2445309 | Zbl 1149.54015
[24] Peng, L.-X.: A special point-countable family that makes a space to be a $D$-space. Adv. Math. (China) 37 (2008), 724-728. MR 2569541
[25] Peng, L.-X.: A note on $D$-spaces and infinite unions. Topology Appl. 154 (2007), 2223-2227. DOI 10.1016/j.topol.2007.01.020 | MR 2328005 | Zbl 1133.54012
[26] Peng, L.-X.: On weakly monotonically monolithic spaces. Commentat. Math. Univ. Carol. 51 (2010), 133-142. MR 2666085 | Zbl 1224.54078
[27] Peng, L.-X.: A note on transitively $D$ and $D$-spaces. Houston J. Math (to appear).
[28] Peng, L.-X., Tall, Franklin D.: A note on linearly Lindelöf spaces and dual properties. Topol. Proc. 32 (2008), 227-237. MR 1500084 | Zbl 1158.54008
[29] Siwiec, F.: On defining a space by a weak base. Pac. J. Math. 52 (1974), 233-245. DOI 10.2140/pjm.1974.52.233 | MR 0350706 | Zbl 0285.54022
[30] L. A. Steen, Jr. J. A. Seebach: Counterexamples in Topology. 2nd edition. Springer New York-Heidelberg-Berlin (1978). MR 0507446
[31] Tkachuk, V. V.: Monolithic spaces and $D$-spaces revisited. Topology Appl. 156 (2009), 840-846. DOI 10.1016/j.topol.2008.11.001 | MR 2492968 | Zbl 1165.54009
Partner of
EuDML logo