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Abstract. In this note, we show that if for any transitive neighborhood assignment ϕ

for X there is a point-countable refinement F such that for any non-closed subset A of X

there is some V ∈ F such that |V ∩ A| > ω, then X is transitively D. As a corollary, if
X is a sequential space and has a point-countable wcs∗-network then X is transitively D,
and hence if X is a Hausdorff k-space and has a point-countable k-network, then X is
transitively D. We prove that if X is a countably compact sequential space and has a point-
countable wcs∗-network, then X is compact. We point out that every discretely Lindelöf
space is transitively D. Let (X, τ ) be a space and let (X, T ) be a butterfly space over (X, τ ).
If (X, τ ) is Fréchet and has a point-countable wcs∗-network (or is a hereditarily meta-
Lindelöf space), then (X, T ) is a transitively D-space.

Keywords: transitively D, sequential, discretely Lindelöf, wcs∗-network
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1. Introduction

The notion of a D-space was first investigated by van Douwen and Pfeffer in [9].

A neighborhood assignment for a space X is a function ϕ from X to the topology

of the space X such that x ∈ ϕ(x) for any x ∈ X . A space X is called a D-space if

for any neighborhood assignment ϕ for X there exists a closed discrete subspace D

of X such that X =
⋃
{ϕ(d) : d ∈ D} (cf. [9]). Many classes of spaces are known to

be D-spaces (cf. [1], [2], [6], [8], [11], and [17]).

In [4], it was proved that if a space X has a point-countable base then X is a D-

space. In [7] and [22], it was proved that if a space X has a point-countable weak

base then X is a D-space. In [24], Peng proved that a space X is a D-space if X is
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sequential and has a point-countable cs∗-network. Recall that a family F of subsets

of a space X is a cs∗-network of X , if for any sequence {xn}n∈N which converges

to a point x and any open set U which contains x, there is some F ∈ F such that

x ∈ F ⊆ U and |{n : xn ∈ F}| = ω (cf. [19]). A subset U of a space X is called

sequentially open if each sequence in X converging to a point in U is eventually in U .

A space X is called sequential if every sequentially open subset of X is open in X

(cf. [29]). Every first countable space is a sequential space. In 2007, Peng proved

that if a regular space X is sequential and has a point-countable k-network then X is

a D-space (cf. [25]). Recall that a family F of a space X is a k-network for X if for

any open set U in X and any compact set C ⊆ U , there exists a finite F ′ ⊆ F such

that C ⊆
⋃

F ′ ⊆ U . In [31], Tkachuk proved that every monotonically monolithic

space is hereditarily a D-space. Inspired by Tkachuk’s idea, Peng introduced the

concept of weakly monotonically monolithic spaces and proved that every weakly

monotonically monolithic space is a D-space (cf. [26]). Many known conclusions

on D-spaces can be obtained by this conclusion, and every regular sequential space

which has a point-countable wcs∗-network is a D-space. Recall that a family F of

subsets of a space X is a wcs∗-network of X , if for any sequence {xn}n∈N which

converges to a point x and any open set U which contains x, there is some F ∈ F

such that F ⊆ U and |{n : xn ∈ F}| = ω (cf. [19]). If F is a k-network of X , then

F is a wcs∗-network of X .

In 2008, Peng introduced the notion of linear D-spaces (cf. [23]). The linear D-

spaces are called transitively D-spaces in [21], since the concept of linearly D has

a proper meaning in [16]. A transitive neighborhood assignment for a space X is

a function ϕ from X to the topology of the space X such that x ∈ ϕ(x) and for each

y ∈ ϕ(x) we have ϕ(y) ⊆ ϕ(x) for any x ∈ X . A space X is called transitively D,

if for any transitive neighborhood assignment ϕ for X there exists a closed discrete

subspace D of X such that X =
⋃
{ϕ(d) : d ∈ D}. By the definitions, we know

that every D-space is transitively D. It was proved that every meta-Lindelöf space

is transitively D (cf. [21]). Gruenhage proved that every submeta-Lindelöf space is

transitively D (cf. [13]). In [27], Peng proved that every weak δθ-refinable space is

transitively D.

In [18, page 28], it was proved that there is a non-regular first countable space X

which has a point-countable wcs∗-network and X is not meta-Lindelöf. Thus we

have the following question: Is every sequential T1-space which has a point-countable

wcs∗-network a D-space or a transitively D-space? In this note, we show that every

sequential T1-space which has a point-countable wcs∗-network is a transitively D-

space, and hence if X is a Hausdorff k-space and has a point-countable k-network,

then X is transitively D. To obtain these conclusions, we prove that if for any

transitive neighborhood assignment ϕ for X there is a point-countable refinement F
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such that for any non-closed subsetA ofX there is some V ∈ F such that |V ∩A| > ω,

then X is transitively D. We also point out that every discretely Lindelöf space is

transitively D.

Let (X, τ) be a topological space. If T is a finer topology on X such that each

p ∈ X has a neighborhood base consisting of sets B such that B \ {p} is open in

the topology τ , then (X, T ) is called a butterfly space over (X, τ). In [15], it was

pointed out that many examples in the area of generalized metrizable spaces are

butterfly topologies over separable metric spaces (e.g., the tangent disc space and

the Sorgenfrey line), and every such butterfly space is subparacompact. Thus by the

conclusion which appears in [13], we know that every butterfly space over a separable

metrizable space is a transitively D-space. In the last part of this note, we discuss

the transitive D-property of a butterfly space over (X, τ).

All the spaces in this note are assumed to be T1-spaces. The set of all positive

integers is denoted by N and ω is N ∪ {0}. In notation and terminology we will

follow [10] and [12].

2. Main results

Recall that a space X is a meta-Lindelöf space if for any open cover U of X there

is a point-countable open refinement.

Proposition 1. If X is a meta-Lindelöf space, then for any transitive neighbor-

hood assignment ϕ for X there is a point-countable refinementF such that if A ⊆ X

is not closed then there is some F ∈ F such that |F ∩ A| > ω.

P r o o f. Let ϕ be any transitive neighborhood assignment for X . Thus ϕ has

a point-countable open refinement F . The family F satisfies the conditions of the

theorem. �

Proposition 2. If a space X is sequential and has a point-countable wcs∗-

network, then for any transitive neighborhood assignment ϕ for X there is a point-

countable refinement F such that if A ⊆ X is not closed then there is some F ∈ F

such that |F ∩ A| > ω.

P r o o f. Let ϕ be any transitive neighborhood assignment for X and let F ∗ be

a point-countable wcs∗-network of X . If F = {F : F ∈ F ∗ and there is some x ∈ X

such that F ⊆ ϕ(x)}, then F is a point-countable refinement of ϕ. If A ⊆ X is

not closed, then there is a sequence {xn : n ∈ N} ⊆ A, which converges to some

point x ∈ A \ A by sequential property of X . Thus there is some F ∈ F ∗ such that

F ⊆ ϕ(x) and |{n : xn ∈ F}| = ω, and hence F ∈ F and |F ∩ A| = ω. �
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Example 3 ([30, Example 78]). Let T be the usual Euclidean topology of R2.

Let S1 = {(x, y) : x, y ∈ R, y > 0}, L = {(x, 0): x ∈ R} and X = S1 ∪ L. Let

T ∗ = {T |X} ∪ {{x} ∪ (S1 ∩ U) : x ∈ L, x ∈ U and U ∈ T }, where T |X =

{U ∩ X : U ∈ T }. The space (X, T ∗) is a non-regular T2-space.

In [18, page 28], it is pointed out that the space X which appears in Example 3

has a locally countable k-network but it has no point-countable cs∗-network. Thus

the space X in Example 3 is a first countable space and has a point-countable wcs∗-

network, but it has no point-countable cs∗-network. The space in Example 3 is

a D-space, since the subspace L is closed discrete in X and S1 is a D-space.

The proof of the following Theorem 4 is analogous to the proof of Theorem 3

in [21].

Theorem 4. Let X be a space. If for any transitive neighborhood assignment ϕ

for X there is a point-countable refinement F such that if A ⊆ X is not closed then

there is some V ∈ F such that |V ∩ A| > ω, then X is transitively D.

P r o o f. Let ϕ = {ϕ(x) : x ∈ X} be any transitive neighborhood assignment

for X . We let F be a point-countable refinement of ϕ such that if A ⊆ X is not

closed then there is some V ∈ F such that |V ∩ A| > ω.

We can assume X = {xα : α < γ}, where γ is a cardinal. Suppose for each α < β,

we have chosen a closed discrete subspace Dα satisfying the following conditions:

(1) xα ∈
⋃
{ϕ(d) : d ∈

⋃
{Dη : η 6 α}};

(2)
⋃
{Dη : η < α} is a closed discrete subspace of X ;

(3) Dα ∩ (
⋃
{ϕ(d) : d ∈

⋃
{Dη : η < α}}) = ∅;

(4) If V ∈ F and V ∩ Dη 6= ∅ for some η 6 α, then |V ∩ Dη| < ω and V ∩ Dβ = ∅

if η < β 6 α.

Before we construct Dβ, let us show that D
′

β =
⋃
{Dα : α < β} is a closed discrete

subspace of X .

By the condition (2), we know that for any α < β, D′

α =
⋃
{Dη : η < α} is a closed

discrete subspace of X . In what follows, we show that the set D′

β is a closed discrete

subspace of X .

First, assume β is a limit ordinal. If x ∈
⋃
{ϕ(d) : d ∈

⋃
{Dα : α < β}}, then let

αx be the smallest ordinal such that x ∈
⋃
{ϕ(d) : d ∈ Dαx

}. By the condition (2), we

know that
⋃
{Dη : η < αx} is a closed discrete subspace of X and Dαx

is also a closed

discrete subspace of X . So we let Vx = ((
⋃
{ϕ(d) : d ∈ Dαx

})\
⋃
{Dη : η < αx})∩V ′

x,

where V ′

x is an open set of X such that x ∈ V ′

x and |V ′

x ∩Dαx
| 6 1. So x ∈ Vx, Vx is

an open set of X , and |Vx ∩ D′

β | 6 1. Thus x 6∈ D′

β \ D′

β . So we have proved that

D′

β \ D′

β ⊆ X \
⋃
{ϕ(d) : d ∈

⋃
{Dα : α < β}}.
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Suppose D′

β is not closed in X . There is some V ∈ F such that |V ∩ D′

β| > ω.

Let η be the smallest ordinal such that V ∩ Dη 6= ∅. Then by the condition (4) we

know that |V ∩ Dη| < ω and V ∩ Dη′ = ∅ if η < η′ < β. Thus |V ∩ D′

β| < ω; this

contradiction shows that D′

β is closed. So D′

β is a closed discrete subspace of X if

β is a limit ordinal.

Now assume that β = α + 1 for some α. So D′

β =
⋃
{Dη : η < β} =

⋃
{Dη :

η 6 α} = (
⋃
{Dη : η < α}) ∪ Dα. By the condition (2), we know that D′

α =
⋃
{Dη : η < α} and Dα are closed discrete subspaces of X . So D′

β is a closed

discrete subspace of X .

We let Uβ =
⋃
{ϕ(d) : d ∈

⋃
{Dη : η < β}}. Now we will construct Dβ .

If xβ ∈ Uβ , then we let Dβ = ∅. So we assume that xβ 6∈ Uβ. If V
′

xβ
= {V : xβ ∈ V

and V ∈ F}, then V ′

xβ
is a countable subfamily of F . Since F is a refinement of ϕ,

there is some xV ∈ X such that V ⊆ ϕ(xV ) for each V ∈ V ′

xβ
. If Vxβ

= {ϕ(xV ) : V ∈

V ′

xβ
}, then Vxβ

is a countable subfamily of ϕ. Enumerate Vxβ
by prime numbers.

If E is an element of the neighborhood assignment ϕ = {ϕ(x) : x ∈ X}, then there

is some x ∈ X such that E = ϕ(x). The point x is called a center point of the set E.

If E = ϕ(x) = ϕ(y) for any two points x and y, then the points x and y are all center

points of the set E.

Let y1 = xβ and Vy1
= Vxβ

. If xV ∈ ϕ(xβ) for each V ∈ V ′

xβ
, then we let y2 = xη,

where η = min{η′ : xη′ 6∈ Uβ ∪ϕ(xβ)}. Now assume that there is some V ∈ V ′

xβ
such

that V ⊂ ϕ(xV ) and xV 6∈ ϕ(xβ). Since xβ ∈ V ⊂ ϕ(xV ) and xβ 6∈ Uβ , we have

xV 6∈ Uβ. Thus ϕ(xV ) ∈ Vy1
and xV 6∈ ϕ(xβ) ∪ Uβ. We take the first member E

of Vy1
such that a center point z of E does not belong to ϕ(y1). Thus E = ϕ(z) and

z 6∈ ϕ(y1). Since E ∈ Vy1
, there is some V ′ ∈ V ′

xβ
such that E = ϕ(xV ′). Since the

neighborhood assignment ϕ is transitive and z 6∈ ϕ(y1), we have xV ′ 6∈ ϕ(y1).

Denote y2 = xV ′ . Thus ϕ(y2) = ϕ(xV ′). The family V ′

y2
= {V : y2 ∈ V and

V ∈ F \ V ′

y1
} is a countable family, where V ′

y1
= V ′

yβ
. If V ′

y2
= ∅, then we let

Vy2
= {∅}. If V ′

y2
6= ∅, then for each V ∈ V ′

y2
there is some xV ∈ X such that

V ⊆ ϕ(xV ). If Vy2
= {ϕ(xV ) : V ∈ V ′

y2
}, then Vy2

is a countable subfamily of ϕ. We

enumerate Vy2
by the squares of prime numbers.

Suppose we have finished n steps. We have ϕ(y1), . . . , ϕ(yn), and families V ′

yi
⊂

F , Vyi
⊂ ϕ, such that if j < i and V ∈ V ′

yj
then V 6∈ V ′

yi
for each i 6 n. If

⋃
{ϕ(yi) : i 6 n} ∪ Uβ = X , then stop the induction, and let Dβ = {yi : i 6 n}.

So we assume
⋃
{ϕ(yi) : i 6 n} ∪ Uβ 6= X . If the center points of members of

⋃
{Vyi

: i 6 n} are all contained in
⋃
{ϕ(yi) : i 6 n}∪Uβ, then

⋃
(
⋃
{Vyi

: i 6 n}) ⊆
⋃
{ϕ(yi) : i 6 n} ∪ Uβ , since the neighborhood assignment ϕ is transitive. In this

case, we let min{η′ : xη′ 6∈ (
⋃
{ϕ(yi) : i 6 n} ∪ Uβ)} = η, and denote xη by yn+1.

Now assume that there is some E′ ∈
⋃
{Vyi

: i 6 n} such that a center point of E′

does not belong to
⋃
{ϕ(yi) : i 6 n}∪Uβ. We have that every center point of E

′ does
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not belong to
⋃
{ϕ(yi) : i 6 n} ∪Uβ . We take the first member E of

⋃
{Vyi

: i 6 n}

such that a center point of E does not belong to
⋃
{ϕ(yi) : i 6 n}∪Uβ . Thus there are

some i 6 n and some V ∈ V ′

yi
such that E = ϕ(xV ) and xV 6∈

⋃
{ϕ(yi) : i 6 n}∪Uβ.

We let yn+1 = xV . In this case, ϕ(yn+1) = ϕ(xV ).

Let V ′

yn+1
= {V : V ∈ F \

⋃
{V ′

yi
: i 6 n} and yn+1 ∈ V }. If V ′

yn+1
= ∅, then

we let Vyn+1
= {∅}. If V ′

yn+1
6= ∅, then for each V ∈ V ′

yn+1
there is some xV ∈ X

such that V ⊆ ϕ(xV ). If Vyn+1
= {ϕ(xV ) : V ∈ V ′

yn+1
}, then Vyn+1

is a countable

subfamily of ϕ. We enumerate it by the (n + 1)st powers of prime numbers.

In this way, we obtain the set Dβ = {yn : n ∈ N}. We have Dβ ∩ Uβ = ∅. Let us

show that the set Dβ is a closed discrete subspace of X .

For any y ∈
⋃
{ϕ(d) : d ∈ Dβ} ∪ Uβ, we know that there is an open set Vy of X

such that y ∈ Vy and |Vy ∩ Dβ | 6 1. Thus y 6∈ Dβ \ Dβ.

Suppose Dβ \ Dβ 6= ∅. Thus there is some V ∈ F such that |V ∩ Dβ| > ω and

V ⊆ ϕ(x) for some x ∈ X . If m = min{n : yn ∈ V and n ∈ N}, then Vym
=

{Epm : p is a prime number}. Since the set V ∈ V ′

ym
\

⋃
{V ′

yn
: n < m}, there is

some xV ∈ X such that V ⊆ ϕ(xV ) and ϕ(xV ) ∈ Vym
. Thus ϕ(xV ) = Eqm for

some prime number q. Since ym ∈ V ⊂ ϕ(xV ) and ym 6∈ Uβ , the point xV 6∈ Uβ.

Since there is some n′ ∈ N such that qm < 2n′

and n′ > m, the set A = {pi : pi <

qm, i 6 n′ and p is a prime number} is a finite set. Thus there is some n > n′ such

that l = min{s : Es ∈
⋃
{Vyi

: i 6 n} and a center point of Es is not contained in⋃
{ϕ(yi) : i 6 n}∪Uβ} > qm. If l = qm, then the point xV 6∈

⋃
{ϕ(yi) : i 6 n}∪Uβ,

since Eqm = ϕ(xV ) and the point xV is a center point of Eqm . Thus yn+1 = xV , so

V ⊆ ϕ(xV ) = ϕ(yn+1). If l > qm, then the point xV ∈
⋃
{ϕ(yi) : i 6 n} ∪ Uβ . Since

xV 6∈ Uβ, there is some i 6 n such that xV ∈ ϕ(yi). Thus V ⊆ ϕ(xV ) ⊆ ϕ(yi). Thus

|V ∩Dβ| < ω. This contradicts |V ∩Dβ | > ω. Thus Dβ is a closed discrete subspace

of X .

From the above discussion, we know that the family {Dη : η 6 β} satisfies the

conditions (1), (2), (3), and (4).

If D =
⋃
{Dα : α < γ}, then we can easily see that X =

⋃
{ϕ(d) : d ∈ D} and

D is a closed discrete subspace of X . So X is transitively D. �

By Proposition 2 and Theorem 4, we have the following theorem.

Theorem 5. If a space X is sequential and has a point-countable wcs∗-network,

then X is transitively D.

A space X is a k-space if and only if A ⊆ X is closed in X whenever A ∩ C is

relatively closed in C for each C ∈ C , where C is the family of all compact sets of X

(cf. [12]).
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By conclusions which appear in [14], we know that if X is a compact Hausdorff

space and has a point-countable k-network then X is metrizable. So we know that if

X is a Hausdorff k-space and has a point-countable k-network then X is sequential.

Thus we have the following corollary.

Corollary 6. If X is a Hausdorff k-space and has a point-countable k-network,

then X is transitively D.

By Proposition 1 and Theorem 4, we have the following corollary.

Corollary 7 ([21, Theorem 3]). Every meta-Lindelöf space is transitively D.

In [16], Guo and Junnila introduced the concept of linearly D. A family U of

subsets of X is monotone if U is linearly ordered by inclusion. A neighborhood

assignment ϕ for X is monotone provided that {ϕ(x) : x ∈ X} is a monotone family.

A spaceX is linearly D provided that for every monotone neighborhood assignment ϕ

for X there exists a closed discrete subspace D of X such that X =
⋃
{ϕ(d) : d ∈ D}

(cf. [16]). By conclusions which appears in [15], we know that a space X is linearly

Lindelöf if and only ifX is linearlyD and has countable extent. Recall that a spaceX

is linearly Lindelöf if every increasing open cover {Uα : α ∈ κ} has a countable

subcover (by increasing, we mean that α < β < κ implies Uα ⊆ Uβ).

Lemma 8 ([21, Theorem 2]). A transitively D-space is linearly D.

Theorem 9. If X is a countably compact sequential space which has a point-

countable wcs∗-network, then X is compact.

P r o o f. By Theorem 5 and Lemma 8, we know that X is linearly D. Thus X is

countably compact linearly D, and hence X is countably compact linearly Lindelöf.

Thus X is compact. �

A space X is discretely Lindelöf, if the closure of every discrete subspace of X

is Lindelöf (cf. [20]). The notion of a discretely Lindelöf space is called strongly

discretely Lindelöf in [3] and [5].

Lemma 10 ([28, Lemma 2.1]). Let X be a space. If ϕ is a neighborhood as-

signment for X , then there is a discrete subspace A of X , and an open family

{V (x) : x ∈ A} such that X =
⋃
{ϕ(x) : x ∈ A}, and X \

⋃
{V (x) : x ∈ A} = A \A,

V (x) ∩ A = {x} and x ∈ V (x) ⊆ ϕ(x) for each x ∈ A.
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Lemma 11 ([21, Theorem 21]. If for any transitive neighborhood assignment ϕ

for X there is a closed transitively D-subspace F ⊆ X such that X =
⋃
{ϕ(d) : d ∈

F}, then X is transitively D.

Theorem 12. Let X be a space. If the closure of every discrete subspace of X is

transitively D, then X is transitively D.

P r o o f. Let ϕ be any transitive neighborhood assignment for X . By Lemma 10,

there is a discrete subspace D of X such that X =
⋃
{ϕ(x) : x ∈ D}. The set D is

a discrete subspace of X , and hence D is transitively D. Thus X is transitively D

by Lemma 11. �

By Corollary 7, we know that every Lindelöf space is transitively D ([23, Corol-

lary 2]). So we have:

Corollary 13. If X is a discretely Lindelöf space, then X is transitively D.

We do not know if every discretely Lindelöf Tychonoff space is Lindelöf (cf. [5]

and [20]). Arhangel’skii proved the following lemma from which it follows that every

discretely Lindelöf space is linearly Lindelöf.

Lemma 14 ([3, Lemma 6]). If X is a discretely Lindelöf space, then every open

cover whose cardinality does not have countable cofinality has a subcover of strictly

smaller cardinality.

We do not know if there exists a transitively D-space which is not a D-space. The

following comments should be useful.

Comment 15. If a space X is discretely Lindelöf, then X is a linearly Lindelöf

transitively D-space by Lemma 14 and Corollary 13. Suppose a space X is a dis-

cretely Lindelöf space which is not Lindelöf, the space X should not be a D-space,

since every linearly Lindelöf D-space is Lindelöf.

Comment 16. If a spaceX is sequential and has a point-countable wcs∗-network,

then X is transitively D by Theorem 5. Suppose we have a sequential space which

has a point-countable k-network and is not a D-space, then such a space would be

a transitively D-space which is not a D-space.

In what follows, we will discuss the transitive D-property of a butterfly space

over (X, τ).
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Proposition 17. If ϕ is a neighborhood assignment for a space X , then the set

D = {y : y ∈ X and y 6∈ ϕ(x) for each x ∈ X \ {y}} is a closed discrete subspace

of X .

P r o o f. If y ∈ D, then ϕ(y)∩D = {y}. If y 6∈ D, then ϕ(y)∩D = ∅. Thus D is

a closed discrete subspace of X . �

Theorem 18. If ϕ is a neighborhood assignment for a space X , then there is

a closed discrete subspace D ⊆ X such that either X =
⋃
{ϕ(d) : d ∈ D} or for each

x ∈ X \
⋃
{ϕ(d) : d ∈ D} there is some y ∈ (X \

⋃
{ϕ(d) : d ∈ D}) \ {x} such that

x ∈ ϕ(y) and ϕ(x) ∩ D = ∅.

P r o o f. Let X = F0 and D0 = {x : x ∈ F0 and x 6∈ ϕ(y) for each y ∈ F0 \ {x}}.

The set D0 is a closed discrete subspace of X by Proposition 17.

Let α be an ordinal. Suppose we have a closed discrete subspace Dβ and a closed

subspace Fβ of X for each β < α such that the following conditions hold:

(1) Dβ ⊆ Fβ and for each d ∈ Dβ we have d 6∈ ϕ(x) for each x ∈ Fβ \ {d};

(2) Fβ = X \
⋃
{ϕ(d) : d ∈

⋃
{Dγ : γ < β}};

(3) The set
⋃
{Dγ : γ < β} is a closed discrete subspace of X .

If Fα = X \
⋃
{ϕ(d) : d ∈

⋃
{Dβ : β < α}}, then Fα is closed in X . Before we

construct Dα, we prove that the set
⋃
{Dβ : β < α} is a closed discrete subspace

of X .

(1) Suppose α = γ+1 for some ordinal γ. We know that
⋃
{Dβ : β < γ} andDγ are

closed discrete subspaces of X . Thus the set
⋃
{Dβ : β < α} =

⋃
{Dβ : β < γ}∪Dγ

is a closed discrete subspace of X .

(2) Suppose α is a limit ordinal. We know that
⋃
{Dγ : γ < β} is a closed discrete

subspace of X for each β < α. For each x ∈
⋃
{ϕ(d) : d ∈

⋃
{Dβ : β < α}} we let

βx be the smallest ordinal such that x ∈ ϕ(d) for some d ∈ Dβx
. Thus ϕ(d)∩Dγ = ∅

if βx + 1 6 γ < α. By induction, we know that
⋃
{Dγ : γ < βx} and Dβx

are closed

discrete subspaces of X . Thus there is an open neighborhood Vx of x such that

|Vx ∩ (
⋃
{Dγ : γ 6 βx})| 6 1. Thus |(Vx ∩ ϕ(d)) ∩ (

⋃
{Dβ : β < α})| 6 1. For each

x ∈ X \
⋃
{ϕ(d) : d ∈

⋃
{Dβ : β < α}} and for each β < α, we have Dβ ⊆ Fβ and

x ∈
⋂

β<α

Fβ . Thus ϕ(x)∩Dβ = ∅. So we have proved that
⋃
{Dβ : β < α} is a closed

discrete subspace of X .

If Dα = {x : x ∈ Fα and x 6∈ ϕ(d) for each d ∈ Fα \ {x}}, then Dα ⊆ Fα and

Dα is a closed discrete subspace of Fα by Proposition 17 and hence Dα is a closed

discrete subspace of X . If x ∈ Fα \
⋃
{ϕ(d) : d ∈ Dα}, then ϕ(x) ∩ Dα = ∅.

In this way, we have some ordinal Λ such that either X =
⋃
{ϕ(d) : d ∈ Dβ and

β < Λ} or FΛ = X \
⋃
{ϕ(d) : d ∈

⋃
{Dβ : β < Λ}} 6= ∅, and for each x ∈ FΛ there is
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some y ∈ FΛ\{x} such that x ∈ ϕ(y). If X =
⋃
{ϕ(d) : d ∈ Dβ and β < Λ}, then the

set
⋃
{Dβ : β < Λ} is a closed discrete subspace ofX , since

⋃
{Dβ : β < α} is a closed

discrete subspace of X , Dα ⊆ Fα and Fα = X \
⋃
{ϕ(d) : d ∈

⋃
{Dβ : β < α}} for

each α < Λ. If FΛ = X \
⋃
{ϕ(d) : d ∈

⋃
{Dβ : β < Λ}} 6= ∅, then

⋃
{Dβ : β < Λ} is

closed discrete and for each x ∈ FΛ there is some y ∈ FΛ \ {x} such that x ∈ ϕ(y)

and ϕ(x) ∩ Dβ = ∅ for each β < Λ. �

Recall that if (X, T ) is a butterfly space over (X, τ) then τ ⊆ T .

Theorem 19. Let (X, T ) be a butterfly space over (X, τ). If (X, τ) is a heredi-

tarily meta-Lindelöf space, then (X, T ) is a transitively D-space.

P r o o f. Let ϕ be any transitive neighborhood assignment for the space (X, T ).

For each x ∈ X , let B(x) be a neighborhood base of x in (X, T ), consisting of

sets B such that B \{x} ∈ τ for each B ∈ B(x). Let ϕ′(x) ∈ B(x) and ϕ′(x) ⊆ ϕ(x)

for each x ∈ X . Thus ϕ′ = {ϕ′(x) : x ∈ X} is a neighborhood assignment for the

space (X, T ). Thus there is a closed discrete (in (X, T )) subspace D ⊆ X such

that either X =
⋃
{ϕ′(d) : d ∈ D} or for each x ∈ X \

⋃
{ϕ′(d) : d ∈ D} there is

some y ∈ (X \
⋃
{ϕ′(d) : d ∈ D}) \ {x} such that x ∈ ϕ′(y) and ϕ′(x) ∩ D = ∅ by

Theorem 18.

We assume that F = X \
⋃
{ϕ′(d) : d ∈ D} 6= ∅. For each x ∈ F , there is some

xy ∈ F \ {x} such that x ∈ ϕ′(xy). If ϕ1(x) = ϕ′(xy) \ {xy}, then ϕ1(x) ∈ τ .

Thus ϕ1 = {ϕ1(x) ∩ F : x ∈ F} is a neighborhood assignment for the subspace

(F, τ |F ). Since (F, τ |F ) is meta-Lindelöf, the cover ϕ1 has a point-countable open

refinement W such that W ∈ τ |F ⊆ T |F for each W ∈ W . For each W ∈ W , there

is some x ∈ F such that W ⊆ ϕ1(x) ⊆ ϕ′(xy) ⊆ ϕ(xy). Thus W is a point-countable

open (in (F, T |F )) refinement of {ϕ(x) ∩ F : x ∈ F}. Thus by Proposition 1 and

Theorem 4, there is a closed discrete subspace (in (F, T |F )) DF ⊆ F such that

F ⊆
⋃
{ϕ(d) : d ∈ DF }. For each x ∈ F , there is an open set Vx ∈ T such

that x ∈ Vx and |Vx ∩ DF | 6 1. If Ox = Vx ∩ ϕ′(x), then Ox ∈ T , x ∈ Ox,

and |Ox ∩ (D ∪ DF )| 6 1. Thus D ∪ DF is a closed discrete subspace of X and

X =
⋃
{ϕ(d) : d ∈ D ∪ DF}. So (X, T ) is transitively D. �

Corollary 20. If (M, τ) is a metrizable space and (M, T ) is a butterfly space

over (M, τ), then (M, T ) is transitively D.

In [13], it was proved that every submeta-Lindelöf space is transitively D. Recall

that a space X is submeta-Lindelöf if any open cover U of X has an open refinement

V =
⋃
{Vn : n ∈ N} such that

⋃
Vn = X for each n ∈ N, and for each x ∈ X there is

some n ∈ N such that |{V : x ∈ V and V ∈ Vn}| 6 ω. By the proof of the conclusion

in [13], we have the following lemma.
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Lemma 21 (cf. [13]). Let X be a space and let ϕ be any transitive neighborhood

assignment for X . If ϕ has an open refinement V =
⋃
{Vn : n ∈ N} such that

⋃
Vn = X for each n ∈ N, and for each x ∈ X there is some n ∈ N such that

|{V : x ∈ V and V ∈ Vn}| 6 ω, then there is a closed discrete subspace D ⊆ X such

that X =
⋃
{ϕ(d) : d ∈ D}.

By Lemma 21 and the proof of Theorem 19, we have:

Theorem 22. Let (X, T ) be a butterfly space over (X, τ). If (X, τ) is a heredi-

tarily submeta-Lindelöf space, then (X, T ) is a transitively D-space.

Recall that a space X is a Fréchet space if whenever A ⊆ X and x ∈ A there is

a sequence {xn : n ∈ N} ⊆ A such that x is a limit point of the sequence {xn}n∈N.

We know every subspace of a Fréchet space is Fréchet.

Theorem 23. Let (X, T ) be a butterfly space over (X, τ). If (X, τ) is Fréchet

and has a point-countable wcs∗-network, then (X, T ) is a transitively D-space.

P r o o f. Let ϕ be any transitive neighborhood assignment for the space (X, T ).

For each x ∈ X , let B(x) be a neighborhood base of x in (X, T ), consisting of

sets B such that B \{x} ∈ τ for each B ∈ B(x). Let ϕ′(x) ∈ B(x) and ϕ′(x) ⊆ ϕ(x)

for each x ∈ X . Thus ϕ′ = {ϕ′(x) : x ∈ X} is a neighborhood assignment for the

space (X, T ). Thus there is a closed discrete (in (X, T )) subspace D ⊆ X such

that either X =
⋃
{ϕ′(d) : d ∈ D} or for each x ∈ X \

⋃
{ϕ′(d) : d ∈ D} there is

some xy ∈ (X \
⋃
{ϕ′(d) : d ∈ D}) \ {x} such that x ∈ ϕ′(xy) and ϕ′(x) ∩ D = ∅ by

Theorem 18.

We assume F = X \
⋃
{ϕ′(d) : d ∈ D} 6= ∅. For each x ∈ F , there is some

xy ∈ F \ {x} such that x ∈ ϕ′(xy). We let ϕ1(x) = ϕ′(xy) \ {xy} for x ∈ F . Let W ∗

be a point-countable wcs∗-network of (X, τ) and let W = {W ∩ F : W ∈ W ∗ and

there is some x ∈ F such that W ⊆ ϕ1(x)}.

If A ⊆ F and A is not closed in (F, T |F ), then A is not closed in (F, τ |F ). Thus

there is some x ∈ F ∩ (A
(τ)

\ A) and a sequence {xn : n ∈ N} ⊆ A such that the

sequence {xn}n∈N converges to the point x. Thus there is some W ∈ W ∗ such

that |{n : xn ∈ W}| = ω and W ⊆ ϕ1(x). So W ⊆ ϕ1(x) ⊆ ϕ′(xy) ⊆ ϕ(xy) for

some xy ∈ F . So W ∩ F ∈ W , and hence the family W satisfies the conditions of

Theorem 4. Thus there is closed discrete subspace (in (F, T |F )) DF ⊆ F such that

F ⊆
⋃
{ϕ(d) : d ∈ DF }. For each x ∈ F , there is some Vx ∈ T such that |Vx∩DF | 6

1 and x ∈ Vx. If Ox = Vx ∩ ϕ′(x) then x ∈ Ox, Ox ∈ T , and |Ox ∩ (D ∪ DF )| 6 1.

Thus D ∪ DF is closed discrete in (X, T ) and X =
⋃
{ϕ(d) : d ∈ D ∪ DF}. Thus

(X, T ) is transitively D. �
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By Corollary 6, we know that if X is a Hausdorff k-space which has a point-

countable k-network then X is transitively D. By Theorem 3 which appears in [25],

we know that if a regular space X is sequential and has a point-countable k-network

then X is a D-space. Thus we have the following problem:

Problem 24. Is there a non-D Hausdorff k-space which has a point-countable

k-network?

Problem 25. Is there a non-D-space which is transitively D?
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