Previous |  Up |  Next

Article

Keywords:
solvable and nilpotent Lie algebras; filiform algebras
Summary:
It is already known that any filiform Lie algebra which possesses a codimension 2 solvable extension is naturally graded. Here we present an alternative derivation of this result.
References:
[1] Ancochea, J. M., Campoamor–Stursberg, R., Vergnolle, L. Garcia: Solvable Lie algebras with naturally graded nilradicals and their invariants. J. Phys. A, Math. Theor. 39 (2006), 1339–1355. DOI 10.1088/0305-4470/39/6/008 | MR 2202805
[2] Campoamor–Stursberg, R.: Solvable Lie algebras with an $\mathbb{N}$–graded nilradical of maximal nilpotency degree and their invariants. J. Phys. A, Math. Theor. 43 (2010), Article ID 145202. DOI 10.1088/1751-8113/43/14/145202 | MR 2606433
[3] Echarte, F. J., Gómez, J. R., Núñez, J.: Les algèbres de Lie filiformes complexes dérivées d’autres algèbres de Lie. [Complex filiform Lie algebras derived from other Lie algebras], Lois d'algèbres et variétés algébraiques (Colmar, 1991), Travaux en Cours 50, Hermann, Paris, 1996, pp. 45–55. MR 1600982
[4] Goze, M., Hakimjanov, Yu.: Sur les algèbres de Lie nilpotentes admettant un tore de derivations. Manuscripta Math. 84 (1994), 115–224. DOI 10.1007/BF02567448 | MR 1285951 | Zbl 0823.17009
[5] Goze, M., Khakimdjanov, Yu.: Nilpotent Lie algebras. Kluwer Academic Publishers Group, Dordrecht, 1996. MR 1383588 | Zbl 0845.17012
[6] Goze, M., Khakimdjanov, Yu.: Handbook of algebra. vol. 2, ch. Nilpotent and solvable Lie algebras, pp. 615–663, North-Holland, Amsterdam, 2000. MR 1759608
[7] Šnobl, L.: On the structure of maximal solvable extensions and of Levi extensions of nilpotent Lie algebras. J. Phys. A, Math. Theor. 43 (2010), 17, Article ID 505202. DOI 10.1088/1751-8113/43/50/505202 | MR 2740380 | Zbl 1231.17004
[8] Šnobl, L., Winternitz, P.: A class of solvable Lie algebras and their Casimir invariants. J. Phys. A, Math. Theor. 38 (2005), 2687–2700. DOI 10.1088/0305-4470/38/12/011 | MR 2132082 | Zbl 1063.22023
[9] Vergne, M.: Cohomologie des algèbres de Lie nilpotentes. Application à l’étude de la variété des algèbres de Lie nilpotentes. C. R. Math. Acad. Sci. Paris Sèr. A–B 267 (1968), A867–A870. MR 0245632 | Zbl 0244.17010
Partner of
EuDML logo