[3] Borowiec, A., Ferraris, M., Francaviglia, M., Palese, M.:
Conservation laws for non-global Lagrangians. Univ. Iagel. Acta Math. 41 (2003), 319–331.
MR 2084774 |
Zbl 1060.70034
[5] Dedecker, P., Tulczyjew, W. M.:
Spectral sequences and the inverse problem of the calculus of variations. Lecture Notes in Math., vol. 836, Springer–Verlag, 1980, pp. 498–503.
MR 0607719 |
Zbl 0482.49027
[6] Eck, D. J.:
Gauge-natural bundles and generalized gauge theories. Mem. Amer. Math. Soc. 247 (1981), 1–48.
MR 0632164 |
Zbl 0493.53052
[7] Ferraris, M., Francaviglia, M., Raiteri, M.:
Conserved Quantities from the Equations of Motion (with applications to natural and gauge natural theories of gravitation). Classical Quantum Gravity 20 (2003), 4043–4066.
DOI 10.1088/0264-9381/20/18/312 |
MR 2017333
[9] Francaviglia, M., Palese, M.:
Second order variations in variational sequences. Steps in differential geometry. Proceedings of the colloquium on differential geometry (Kozma, L. et al., ed.), Univ. Debrecen, Institute of Mathematics and Informatics, 2001, Debrecen, Hungary, July 25-30, 2000, pp. 119–130.
MR 1859293 |
Zbl 0977.58019
[12] Krupka, D.: Some Geometric Aspects of Variational Problems in Fibred Manifolds. Folia Fac. Sci. Natur. UJEP Brunensis, vol. 14, 1973, pp. 1–65.
[13] Krupka, D.:
Variational Sequences on Finite Order Jet Spaces. Proc. Differential Geom. Appl. (Janyška, J., Krupka, D., eds.), World Sci. Singapore, 1990, pp. 236–254.
MR 1062026 |
Zbl 0813.58014
[16] Palese, M., Winterroth, E.:
Global generalized Bianchi identities for invariant variational problems on Gauge-natural bundles. Arch. Math. (Brno) 41 (3) (2005), 289–310.
MR 2188385 |
Zbl 1112.58005
[17] Palese, M., Winterroth, E.: Variational Lie derivative and cohomology classes. AIP Conf. Proc. 1360 (2011), 106–112.
[18] Sardanashvily, G.: Noether conservation laws issue from the gauge invariance of an Euler-Lagrange operator, but not a Lagrangian. arXiv:math-ph/0302012; see also Bashkirov, D., Giachetta, G., Mangiarotti, L., Sardanashvily, G.: Noether's second theorem in a general setting. Reducible gauge theories, J. Phys. A38 (2005), 5329–5344.
[19] Takens, F.:
A global version of the inverse problem of the calculus of variations. J. Differential Geom. 14 (1979), 543–562.
MR 0600611 |
Zbl 0463.58015
[21] Vinogradov, A. M.:
On the algebro–geometric foundations of Lagrangian field theory. Soviet Math. Dokl. 18 (1977), 1200–1204.
MR 0501142 |
Zbl 0403.58005