[1] Alekseevsky, D. V.: Riemannian manifolds with exceptional holonomy groups. Funksional Anal. Prilozh. 2 2 (1968), 1–10.
[3] Berger, M.:
Sur les groupes d’holonomie des variétés à connexion affine et des variétés Riemanniennes. Bull. Soc. Math. France 83 (1955), 279–330.
MR 0079806
[4] Berger, M.: Les espace symétriques non compacts 1957. Ann. Sci. École Norm. Sup. (1957).
[5] Bergery, L. Bérard, Ikemakhen, A.:
On the holonomy of Lorentzian manifolds. Proceedings of Symposia in Pure Mathematics, vol. 54 Part 2, 1993, pp. 27–40.
MR 1216527
[6] Bergery, L. Bérard, Ikemakhen, A.:
Sur l’holonomie des variétés pseudo–Riemanniennes de signature (n,n). Bull. Soc. Math. France 125 (1) (1997), 93–114.
MR 1459299
[8] Boubel, Ch.: Sur l’holonomie des manifolds pseudo–Riemanniennes. Ph.D. thesis, Université Henri Poincaré Nancy I, 2000.
[10] Bryant, R. L.:
Metrics with exceptional holonomy. Ann. of Math. (2) 126 (1987), 525–576.
MR 0916718 |
Zbl 0637.53042
[11] Bryant, R. L.:
Classical, exceptional, and exotic holonomies: A status report. Actes de la Table Ronde de Géométrie Différentielle en l'Honneur de Marcel Berger, Soc. Math. France, 1996, pp. 93–166.
MR 1427757 |
Zbl 0882.53014
[13] Cahen, M., Parker, M.:
Sur des classes d’espaces pseudo-Riemannien symétriques. Bull. Soc. Math. Belg. 22 (1970), 339–354.
MR 0286031
[14] Cahen, M., Parker, M.:
Pseudo-Riemannian symmetric spaces. Mem. Amer. Math. Soc. 24 (229) (1980).
MR 0556610 |
Zbl 0438.53057
[16] Dombrowski, P.:
On the geometry of the tangent bundle. J. Reine Angew. Math. 2101 (1962), 73–88.
MR 0141050 |
Zbl 0105.16002
[19] Galaev, A. S., Leistner, T.:
Holonomy groups of Lorentzian manifolds: Classification, examples, and applications, Recent developments in pseudo-Riemannian geometry. ESI Lect. Math. Phys., Eur. Math. Soc. (2008), 53—96.
MR 2436228
[20] Ikemakhen, A.:
Example of indecomposable non–irreductible Lorentzian manifolds. Ann. Sci. Math. Quebec 20 (1996), 53–66.
MR 1397338
[21] Kobayashi, S., Nomizu, K.:
Fondation of Differential Geometry, vol. I,II. Intersciense, New York–London, 1963.
MR 0152974
[22] Kowalski, O.:
Curvature of the induced Riemannian metric on the tangent bundle of a Riemannian manifolds. J. Reine Angew. Math. 250 (1971), 124–129.
MR 0286028
[23] Krantz, T.: Holonomie des connexions sans torsion. Ph.D. thesis, University Henri Poincaré Nancy 1, 2007.
[24] Leistner, T.: Berger algebras, weak-Berger algebras and Lorentzian holonomy. (2002), sfb 288 preprint no. 567.
[25] Leistner, T.:
On the classification of Lorentzian holonomy groups. J. Differential Geom. 76 (3) (2007), 423–484.
MR 2331527 |
Zbl 1129.53029