Previous |  Up |  Next

Article

Keywords:
pseudo-Riemannian manifold; tangent bundle; Sasaki metric; neutral metric; holonomy group; indecomposable-reducible manifold; Einstein manifold
Summary:
We provide the tangent bundle $TM$ of pseudo-Riemannian manifold $(M,g)$ with the Sasaki metric $g^s$ and the neutral metric $g^n$. First we show that the holonomy group $H^s$ of $(TM ,g^s)$ contains the one of $(M,g)$. What allows us to show that if $(TM ,g^s)$ is indecomposable reducible, then the basis manifold $(M,g)$ is also indecomposable-reducible. We determine completely the holonomy group of $(TM ,g^n)$ according to the one of $(M,g)$. Secondly we found conditions on the base manifold under which $(TM ,g^s)$ ( respectively $(TM ,g^n)$ ) is Kählerian, locally symmetric or Einstein manifolds. $(TM ,g^n)$ is always reducible. We show that it is indecomposable if $(M,g)$ is irreducible.
References:
[1] Alekseevsky, D. V.: Riemannian manifolds with exceptional holonomy groups. Funksional Anal. Prilozh. 2 2 (1968), 1–10.
[2] Ambrose, W., Singer, I. M.: A theorem on holonomy. Trans. Amer. Math. Soc. 79 (1953), 428–443. DOI 10.1090/S0002-9947-1953-0063739-1 | MR 0063739 | Zbl 0052.18002
[3] Berger, M.: Sur les groupes d’holonomie des variétés à connexion affine et des variétés Riemanniennes. Bull. Soc. Math. France 83 (1955), 279–330. MR 0079806
[4] Berger, M.: Les espace symétriques non compacts 1957. Ann. Sci. École Norm. Sup. (1957).
[5] Bergery, L. Bérard, Ikemakhen, A.: On the holonomy of Lorentzian manifolds. Proceedings of Symposia in Pure Mathematics, vol. 54 Part 2, 1993, pp. 27–40. MR 1216527
[6] Bergery, L. Bérard, Ikemakhen, A.: Sur l’holonomie des variétés pseudo–Riemanniennes de signature (n,n). Bull. Soc. Math. France 125 (1) (1997), 93–114. MR 1459299
[7] Besse, A.: Einstein manifolds. Springer Verlag, New York, 1987. MR 0867684 | Zbl 0613.53001
[8] Boubel, Ch.: Sur l’holonomie des manifolds pseudo–Riemanniennes. Ph.D. thesis, Université Henri Poincaré Nancy I, 2000.
[9] Boubel, Ch.: On the holonomy of Lorentzian metrics. Ann. Fac. Sci. Toulouse 14 (3) (2007), 427–475. DOI 10.5802/afst.1156 | MR 2379049 | Zbl 1213.53063
[10] Bryant, R. L.: Metrics with exceptional holonomy. Ann. of Math. (2) 126 (1987), 525–576. MR 0916718 | Zbl 0637.53042
[11] Bryant, R. L.: Classical, exceptional, and exotic holonomies: A status report. Actes de la Table Ronde de Géométrie Différentielle en l'Honneur de Marcel Berger, Soc. Math. France, 1996, pp. 93–166. MR 1427757 | Zbl 0882.53014
[12] Cahen, A., Wallach, N.: Lorentzian symmetric spaces. Bull. Amer. Math. Soc. 76 (1970), 585–591. DOI 10.1090/S0002-9904-1970-12448-X | MR 0267500 | Zbl 0194.53202
[13] Cahen, M., Parker, M.: Sur des classes d’espaces pseudo-Riemannien symétriques. Bull. Soc. Math. Belg. 22 (1970), 339–354. MR 0286031
[14] Cahen, M., Parker, M.: Pseudo-Riemannian symmetric spaces. Mem. Amer. Math. Soc. 24 (229) (1980). MR 0556610 | Zbl 0438.53057
[15] de Rham, G.: Sur la réductibilité d’un espace de Riemann. Math Helv. 26 (1952), 328–344. DOI 10.1007/BF02564308 | MR 0052177 | Zbl 0048.15701
[16] Dombrowski, P.: On the geometry of the tangent bundle. J. Reine Angew. Math. 2101 (1962), 73–88. MR 0141050 | Zbl 0105.16002
[17] Galaev, A. S.: Metrics that realize all Lorentzian holonomy algebras. Int. J. Geom. Meth. Modern Phys. 3 (5–6) (2006), 1025–1045. DOI 10.1142/S0219887806001570 | MR 2264404 | Zbl 1112.53039
[18] Galaev, A. S.: Holonomy of Einstein Lorentzian manifolds. Classical and Quantum Gravity 27 (7) (2010), 1–13. DOI 10.1088/0264-9381/27/7/075008 | MR 2602646 | Zbl 1187.83017
[19] Galaev, A. S., Leistner, T.: Holonomy groups of Lorentzian manifolds: Classification, examples, and applications, Recent developments in pseudo-Riemannian geometry. ESI Lect. Math. Phys., Eur. Math. Soc. (2008), 53—96. MR 2436228
[20] Ikemakhen, A.: Example of indecomposable non–irreductible Lorentzian manifolds. Ann. Sci. Math. Quebec 20 (1996), 53–66. MR 1397338
[21] Kobayashi, S., Nomizu, K.: Fondation of Differential Geometry, vol. I,II. Intersciense, New York–London, 1963. MR 0152974
[22] Kowalski, O.: Curvature of the induced Riemannian metric on the tangent bundle of a Riemannian manifolds. J. Reine Angew. Math. 250 (1971), 124–129. MR 0286028
[23] Krantz, T.: Holonomie des connexions sans torsion. Ph.D. thesis, University Henri Poincaré Nancy 1, 2007.
[24] Leistner, T.: Berger algebras, weak-Berger algebras and Lorentzian holonomy. (2002), sfb 288 preprint no. 567.
[25] Leistner, T.: On the classification of Lorentzian holonomy groups. J. Differential Geom. 76 (3) (2007), 423–484. MR 2331527 | Zbl 1129.53029
[26] Wu, H.: On the de Rham decomposition theorem. llinois J. Math. 8 (1964), 291–311. MR 0161280 | Zbl 0122.40005
Partner of
EuDML logo