Previous |  Up |  Next

Article

Keywords:
quasi-Einstein manifolds; generalized quasi-Einstein manifold; manifold of generalized quasi-constant curvature; manifold of quasi-constant curvature
Summary:
The object of the present paper is to study a type of Riemannian manifold called generalized quasi-Einstein manifold. The existence of a generalized quasi-Einstein manifold have been proved by non-trivial examples.
References:
[1] Bejan, C., Binh, T. Q.: Generalized Einstein manifolds. WSPC–Proceeding Trim Size, dga 2007, 2007, pp. 47–54.
[2] Besse, A. L.: Einstein manifolds. Ergeb. Math. Grenzgeb., 3. Folge, Bd. 10, Springer–Verlag, Berlin, Heidelberg, New York, 1987. MR 0867684 | Zbl 0613.53001
[3] Blair, D. E.: Riemannian geometry of contact and symplectic manifolds. Birkhauser, Boston, 2002. MR 1874240 | Zbl 1011.53001
[4] Chaki, M. C.: On generalized quasi–Einstein manifolds. Publ. Math. Debrecen 58 (2001), 683–691. MR 1828719 | Zbl 1062.53035
[5] Chaki, M. C.: On super quasi–Einstein manifolds. Publ. Math. Debrecen 64 (2004), 481–488. MR 2059079 | Zbl 1093.53045
[6] Chaki, M. C., Maity, R. K.: On quasi–Einstein manifolds. Publ. Math. Debrecen 57 (2000), 297–306. MR 1798715 | Zbl 0968.53030
[7] Chen, B. Y.: Geometry of submanifolds. Marcel Dekker. Inc., New York, 1973. MR 0353212 | Zbl 0262.53036
[8] Chen, B. Y.: Geometry of submanifolds and its applications. Science University of Tokyo, 1981. MR 0627323 | Zbl 0474.53050
[9] Chen, B. Y., Yano, K.: Hypersurfaces of a conformally flat space. Tensor N. S. 26 (1972), 318–322. MR 0331283 | Zbl 0257.53027
[10] Das, Lovejoy: On generalized $p$–quasi–Einstein manifolds. preprint. Zbl 1159.53325
[11] De, U. C., Gazi, A. K.: On nearly quasi–Einstein manifolds. Novi Sad J. Math. 38 (2) (2008), 115–121. MR 2526034
[12] De, U. C., Ghosh, G. C.: On generalized quasi–Einstein manifolds. Kyungpook Math. J. 44 (2004), 607–615. MR 2108466 | Zbl 1076.53509
[13] De, U. C., Ghosh, G. C.: On quasi–Einstein and special quasi–Einstein manifolds. Proc. of the Int. Conf. of Mathematics and its Applications, Kuwait University, April 5–7, 2004, 2004, pp. 178–191. MR 2143298
[14] Deszcz, R., Hotlos, M., Senturk, Z.: On curvature properties of quasi–Einstein hypersurfaces in semi–Euclidean spaces. Soochow J. Math. 27 (2001), 375–389. MR 1867806 | Zbl 1008.53020
[15] Mocanu, A. L.: Les variétés à courbure quasi-constante de type Vranceanu (French). rench), Proceedings of the National Conference on Geometry and Topology (1986), Univ. Bucureşti, Bucharest, 1988, Manifolds with quasiconstant curvature of Vranceanu type, pp. 163–168. MR 0980015
[16] Muelemeester, W. De, Verstraelen, L.: Codimension 2 submanifolds with 2–quasi–umbilical normal direction. J. Korean Math. Soc. 15 (1979), 101–108.
[17] Patterson, E. M.: Some theorems on Ricci–recurrent spaces. J. London Math. Soc. 27 (1952), 2887–295. MR 0048891 | Zbl 0048.15604
[18] Shaikh, A. A.: On pseudo quasi–Einstein manifolds. Periodica Mathematica Hungarica 59 (2) (2009), 119–146. DOI 10.1007/s10998-009-0119-6 | MR 2587857 | Zbl 1224.53029
[19] Tamassay, L., Binh, T. Q.: On weak symmetries of Einstein and Sasakian manifolds. Tensor N. S. 53 (1993), 140–148. MR 1455411
[20] Vranceanu, Gh.: Lecons des Geometrie Differential. Ed. de L'Academie, vol. 4, Bucharest, 1968.
[21] Yano, K., Sawaki, S.: Riemannian manifolds admitting a conformal transformation group. J. Differential Geom. 2 (1968), 161–184. MR 0233314 | Zbl 0167.19802
Partner of
EuDML logo