Previous |  Up |  Next

Article

Keywords:
submanifolds; homogeneous spaces; symmetric spaces
Summary:
We will prove that if an open subset of $\mathbb{C}{}P^{n}$ is isometrically immersed into $\mathbb{C}{}P^{m}$, with $m<(4/3)n-2/3$, then the image is totally geodesic. We will also prove that if an open subset of $\mathbb{H}{}P^{n}$ isometrically immersed into $\mathbb{H}{}P^{m}$, with $m<(4/3)n-5/6$, then the image is totally geodesic.
References:
[1] Agaoka, Y.: A note on local isometric imbeddings of complex projective spaces. J. Math. Kyoto Univ. 27 (3) (1987), 501–505. MR 0910231 | Zbl 0633.53080
[2] Agaoka, Y., Kaneda, E.: On local isometric immersions of Riemannian symmetric spaces. Tôhoku Math. J. 36 (1984), 107–140. DOI 10.2748/tmj/1178228907 | MR 0733623 | Zbl 0533.53052
[3] Bourguignon, J., Karcher, H.: Curvature operators pinching estimates and geometric examples. Ann. Sci. École Norm. Sup. (4) 11 (1978), 71–92. MR 0493867 | Zbl 0386.53031
[4] Dajczer, M., Rodriguez, L.: On isometric immersions into complex space forms. VIII School on Differential Geometry (Portuguese) (Campinas, 1992), vol. 4, Mat. Contemp., 1993, pp. 95–98. MR 1302494 | Zbl 0852.53044
[5] Dajczer, M., Rodriguez, L.: On isometric immersions into complex space forms. Math. Ann. 299 (1994), 223–230. DOI 10.1007/BF01459781 | MR 1275765 | Zbl 0806.53019
[6] Gray, A.: A note on manifolds whose holonomy group is a subgroup of $Sp(n)\cdot Sp(1)$. Michigan Math. J. 16 (1969), 125–128. MR 0244913
[7] Helgason, S.: Differential Geometry, Lie Groups, and Symmetric Spaces. Academic Press, New York, San Francisco and London, 1978, Ch. 4. MR 0514561 | Zbl 0451.53038
[8] Küpelî, D. N.: Notes on totally geodesic Hermitian subspaces of indefinite Kähler manifolds. Atti Semin. Mat. Fis. Univ. Modena Reggio Emilia 43 (1) (1995), 1–7. MR 1338255
[9] Rivertz, H. J.: On isometric and conformal immersions into Riemannian spaces. Ph.D. thesis, Department of Mathematics, University of Oslo, 1999.
[10] Tomter, P.: Isometric immersions into complex projective space. Lie groups, geometric structures and differential equations—one hundred years after Sophus Lie, vol. 37, Adv. Stud. Pure Math., 2002, pp. 367–396. MR 1980909 | Zbl 1043.53047
[11] Wolf, J. A.: Correction to: The geometry and structure of isotropy irreducible homogeneous spaces. Acta Math. 152 (1984), 141–152. DOI 10.1007/BF02392195 | MR 0736216 | Zbl 0539.53037
Partner of
EuDML logo