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ON LOCAL ISOMETRIC IMMERSIONS INTO COMPLEX AND
QUATERNIONIC PROJECTIVE SPACES

Hans Jakob Rivertz

Abstract. We will prove that if an open subset of CPn is isometrically
immersed into CPm, withm < (4/3)n−2/3, then the image is totally geodesic.
We will also prove that if an open subset of HPn isometrically immersed into
HPm, with m < (4/3)n− 5/6, then the image is totally geodesic.

1. Introduction

It is a fundamental question in submanifold theory as to whether a given
Riemannian manifold is (locally) isometrically immersible into another Riemannian
manifold. A subsequent, and even more fundamental, question is whether this
immersion, if it exists, is locally rigid.

Most such results have been on either isometric immersions into spaces of
constant curvature, isometric immersions with some additional conditions, or
isometric immersions of codimension 1, (cf. Tomter [10]).

Let CPn ⊂ CPm be the standard embedding of the complex projective n-space
into the complex projective m-space. In this article we will prove that, for low
codimensions, each open region U of CPn is rigid in CPm in the class of real
homothetic immersions. Those are real conformal immersions with constant nonzero
conformality factor.

Let HPn ⊂ HPm be the standard embedding of the quaternionic projective
n-space into the quaternionic projective m-space. We will prove that, for low
codimensions, each open region U of HPn is rigid in HPm in the class of real
homothetic immersions.

Remark. The results in this paper are easily extended to rigidity in the class of
conformal immersions, (e.g. see [9]).

The following definition will be central.

Definition. A totally real map is a real linear map between complex vector spaces
with the property that all images of totally real subspaces are totally real. A totally
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real morphism is a diffeomorphism between almost complex manifolds such that
its derivative is totally real at each point.

2. Isometric immersions into Complex projective space

Let n < m be natural numbers. Let M = CPn and N = CPm be complex
projective spaces, both equipped with the Fubini-Study metric. Further, let f : U ⊂
M → N be an isometric immersion, where U is an open set in M . The number
k = 2m− 2n denotes the real codimension of f . We let JM and JN be the almost
complex structures on M and N respectively. Let f∗ be the differential of f and let
πf be the projection of Tf(p)N onto f∗(p)(TpM). Consider the following diagram:

(1) Tf(p)N

πf

��
TpM

f∗(p)//

f∗(p)
99ssssssssss

f∗(p)(TpM)

Lemma 1. If f : M → N is as above and k < (1/2)m− 1, then f is a totally real
morphism.

Proof. Since f is an immersion, the following is true for all p ∈ U
(2) rank

(
πf ◦RN (f∗(p)X, f∗(p)Y ) ◦ f∗(p) − f∗(p) ◦RM (X,Y )

)
≤ 2k .

For reference see Agaoka [2]. The curvature of (CPn, J) is [3]
(3) R(X,Y ) = α

(
X ∧ Y + JX ∧ JY + 2〈X, JY 〉J

)
,

where X ⊥ Y and α is the holomorphic curvature. When 〈X, JNY 〉 6= 0, the rank of
RN (X,Y ) is 2m. So if 〈f∗(p)X,J

Nf∗(p)Y 〉 6= 0, the rank of πf ◦RN
(
f∗(p)X, f∗(p)Y

)
◦

f∗(p) is at least 2m− 2k. Let Y ⊥ X, JMX. Then rankRM (X,Y ) = 4. Thus, the
rank of πf ◦RN (f∗(p)X, f∗(p)Y )◦f∗(p)−f∗(p)◦RM (X,Y ) is at least 2m−4−2k. The
inequality (2) gives 2m− 4 ≤ 4k, we therefore have that 〈f∗(p)X, J

Nf∗(p)Y 〉 = 0
whenever k < (1/2)m− 1 and Y ⊥ X, JMX. �

Let ω be the symplectic form on TM , ω(X,Y ) = 〈X, JMY 〉, and define the
form ω̃(X,Y ) = 〈f∗X, JNf∗Y 〉.

Lemma 2. If f is a totally real morphism, then ω̃ = c ω, where c has its values
in [−1, 1].

Proof. Per definition, the maximal subgroup of SO(2n) that fixes ω is U(n). Since
U(n) acts transitively on the family of all totally real subsets of TpM , U(n) will
fix ω̃ too. It is known that SO(2n)/U(n) is an irreducible symmetric space [7], so
we have that ω and ω̃ are proportional. It is trivial to show that |c| ≤ 1. �

Lemma 3. If f is a totally real morphism and m < 2n, then f∗ is a complex
linear map up to conjugation at each point. Thus, f is almost (anti) holomorphic.

Proof. We only have to show that |c| = 1. If |c| 6= 1, we can construct 4n linearly
independent vectors in Tf(p)N , but that makes m ≥ 2n. �
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Proposition 1. If k < (1/2)m− 1 and f is an isometric immersion, then M and
N have the same holomorphic curvatures.

Proof. From Lemma 3 one knows that f∗(JMX) = JNf∗X, ∀X ∈ TpM . We there-
fore have RN (f∗X, f∗(JMX))− f∗RM (X, JMX) = 2(αN −αM )[f∗X ∧ f∗(JMX) +
〈X,X〉JN ]. Agaoka’s inequality (2) and k < (1/2)m− 1 implies that αN−αM = 0.

�

We recall the notion of the subspace of nullity:

(4) Γ(p) = {X ∈ TpM |RM (X,Y ) = (RN (X,Y )|TpM )>, for every Y ∈ TpM} .

Notice that from Proposition 1 and Lemma 3, we have Γ(p) = TpM for all p ∈ U ,
(i.e. f is of full nullity).

Proposition 2. If M and N are Kähler manifolds and f is an (anti) holomorphic
isometric immersion of full nullity, then f is totally geodesic.

Proof. The proposition is a special case of a result of Küpelî [8]. �

The following theorem follows from Proposition 1 and Proposition 2.

Theorem 1. For an open set U ⊂ CPn, if f : U → CPm is an isometric immersion
and m < (4/3)n− 2/3, then f is totally geodesic.

3. Isometric immersions into Quaternionic projective space

Let n < m be natural numbers, M = HPn, and N = HPm. I.e. M and
N are quaternionic projective spaces of real dimensions 4n and 4m respectively.
Let both spaces have the usual symmetric metric. Let f : U ⊂ M → N be an
isometric immersion, where U is an open set in M . Let k = 4m− 4n denote the
real codimension of f . {IM , JM ,KM} and {IN , JN ,KN} are the quaternionic
structures on M and N respectively. The curvature of HP ∗ is [3]

R(X,Y ) = α
(
X ∧ Y + IX ∧ IY + JX ∧ JY +KX ∧KY

+ 2〈X, IY 〉I + 2〈X,JY 〉J + 2〈X,KY 〉K
)
,(5)

where X ⊥ Y and α is a positive constant. Let 〈X, aINY + bJNY + cKNY 〉 6= 0,
for some a, b, c ∈ R. Then, the rank of RN (X,Y ) is at least 4m− 2. So the rank of

πf ◦RN
(
f∗(p)X, f∗(p)Y

)
◦ f∗(p)

is at least 4m− 2− 2k.
Let Y ⊥ X, IMX, JMX,KMX. Then rankRM (X,Y ) = 8. Thus, we have that

the rank of πf ◦RN (f∗(p)X, f∗(p)Y )◦f∗(p)−f∗(p)◦RM (X,Y ) is at least 4m−10−2k.
From the inequality (2) we have that 4m − 10 ≤ 4k. We therefore have that
〈f∗(p)X, I

Nf∗(p)Y 〉 = 0, 〈f∗(p)X, J
Nf∗(p)Y 〉 = 0, and 〈f∗(p)X,K

Nf∗(p)Y 〉 = 0
whenever k < m − 5/2 and Y ⊥ X, IMX, JMX, KMX. This establishes the
following lemma.

Lemma 4. If f : M → N is as above and k < m − 5/2, then f is a totally real
morphism1 with respect to IM , JM , and KM .
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Let ω be the R3-valued “symplectic form” on TM ,
ω(X,Y ) = (〈X, IMY 〉, 〈X, JMY 〉, 〈X,KMY 〉) ,

and define the R3-valued form
ω̃(X,Y ) = (〈f∗X, INf∗Y 〉, 〈f∗X, JNf∗Y 〉, 〈f∗X,KNf∗Y 〉) .

Lemma 5. If f∗ is a totally real morphism, then ω̃ = A ◦ ω, where A ∈ GL(R3),
with ‖A‖ ≤ 1.

Proof. Sp(n)Sp(1) is the maximal subgroup of SO(4n) that preserves the family of
totally real subsets of Hn ' R4n; Sp(n)Sp(1) is the normalizer of Sp(1) in SO(4n),
[6]. So the quotient space SO(4n)/Sp(n)Sp(1) represents all orthogonal quaternionic
structures on R4n. sp(n) and sp(1) ⊂ so(4n) are irreducible representations of
Sp(n)Sp(1) and it is known that SO(4n)/Sp(n)Sp(1) is an isotropy irreducible
homogeneous space for n > 1 [11], so we have the irreducible decomposition
so(4n) = sp(n) ⊕ sp(1) ⊕ p of non-equivalent Sp(n)Sp(1)-representations. The
three components of ω may be viewed as a basis of sp(1) in a natural way. ω is
fixed by Sp(n)Sp(1) and ω and ω̃ are zero on all totally real subspaces of Hn. The
subrepresentation of so(4n) generated by the components of ω̃ must be sp(1), since
this is the only one that vanishes on totally real subspaces of Hn. That is, ω̃ = A◦ω
where A is a 3× 3 matrix. It is trivial to show that ‖A‖ ≤ 1. �

Lemma 6. If f∗ is a totally real morphism and m < 2n, then f∗ is a quaternionic
linear map up to general conjugation. Thus, f is quaternionic analytic.

Proof. We only have to show that A ∈ O(3). If A 6∈ O(3), we can construct 8n
linearly independent vectors in Tf(p)N , but that makes m ≥ 2n. �

Proposition 3. If k < m − 5/2 and f is a local isometric immersion, then M
and N have the same holomorphic curvatures.

Proof. From Lemma 4 and Lemma 6 one knows that f∗(IMX) = INf∗X,
f∗(JMX) = JNf∗X, and f∗(KMX) = KNf∗X ∀X ∈ TpM . We therefore have
RN (f∗X, f∗(IMX))−f∗RM (X, IMX) = 2(αN−αM )[f∗X∧f∗(IMX)−f∗(JMX)∧
f∗(KMX) + 〈X,X〉IN ]. Agaokas inequality (2) and k < m − 5/2 implies that
αN − αM = 0. �

A theorem of Alfred Gray [6, Theorem 5, page 127] is:

Theorem 2. Let Ñ be a quaternionic Kähler manifold, and suppose M is a
quaternionic submanifold of Ñ . Let M have the induced Riemannian structure of
Ñ . Then M is a quaternionic Kähler manifold and M is totally geodesic in Ñ .

Thus from this theorem and Proposition 3 we have the following theorem.

Theorem 3. Let f : HPn −→ HPm be an isometric immersion. If m < (4/3)n−
5/6, then f is totally geodesic.

1A totally real morphism between quaternionic vector spaces is a real linear map where the
images of totally real subspaces are totally real.
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4. Discussion

Since n < m < (4/3)n − 2/3 we have that m ≥ 7. So the examples of lowest
dimension where Theorem 1 applies are

M = CP 6 → N = CP 7

M = CP 7 → N = CP 8

M = CP 8 → N = CP 9

M = CP 9 → N = CP 11

M = CP 10 → N = CP 12

It would be of interest to improve the results in this article to local isometric
immersions of spaces of lower dimensions such as CP 2 into CP 3. An article on this
is in preparation.

From Proposition 1 we have that for m < (4/3)n − 2/3, there exists no local
isometric immersions of CPn into CPm if these spaces have different holomorphic
curvature. Dajczer and Rodriguez (see [4, 5]) have proved the following. If f : M2n →
CQmc , n ≥ 2, is a local isometric immersion of a Kähler manifold into a complex
space form of constant holomorphic curvature c 6= 0 such that at one point
the sectional curvature of M satisfies KM ≤ c/4 and m < (3/2)n, then f is
holomorphic.

From Agaoka[1] we know that if CPn can be local isometrically immersed into
Euclidean space R2n+k, then k ≥ 1

5 (6n − 4). This result uses only the Gauss
equations.

Let CPn and CPm have different maximal sectional curvature. Since the Gauss
equations for holomorphic isometric immersions of CPn into CPm with different
maximal sectional curvature are equivalent to the the Gauss equations for isometric
immersions of CPn into Euclidean space R2n+k, the consequence of these results
of Dajczer, Rodriguez, and Agaoka is:

If αM ≤ (1/4)αN , n > (2/3)m and n ≥ 2, then there are no local real isometric
immersions of M into N .

My thesis “On Isometric and Conformal immersions into Riemannian Manifolds”
[9] contains the results of this article. It also contains similar results for local
conformal immersions and isometric immersions of homogeneous spheres into
complex and quaternionic projective space. The hyperbolic cases are also considered.
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