Previous |  Up |  Next

Article

Keywords:
nonparametric functional estimation; density estimation; regression estimation; bootstrap; resampling methods; confidence regions; empirical processes
Summary:
We consider, in the framework of multidimensional observations, nonparametric functional estimators, which include, as special cases, the Akaike–Parzen–Rosenblatt kernel density estimators ([1, 18, 20]), and the Nadaraya–Watson kernel regression estimators ([16, 22]). We evaluate the sup-norm, over a given set ${\bf I}$, of the difference between the estimator and a non-random functional centering factor (which reduces to the estimator mean for kernel density estimation). We show that, under suitable general conditions, this random quantity is consistently estimated by the sup-norm over ${\bf I}$ of the difference between the original estimator and a bootstrapped version of this estimator. This provides a simple and flexible way to evaluate the estimator accuracy, through a single bootstrap. The present work generalizes former results of Deheuvels and Derzko [4], given in the setup of density estimation in $\mathbb{R}$.
References:
[1] Akaike, H.: An approximation of the density function. Ann. Inst. Statist. Math. 6 (1954), 127–132. DOI 10.1007/BF02900741 | MR 0067412
[2] Bickel, P. J., Rosenblatt, M.: On some global measures of the deviations of density functions estimates. Ann. Statist. 1 (1973), 1071–1095. DOI 10.1214/aos/1176342558 | MR 0348906
[3] Claeskens, G., Keilegom, I. van: Bootstrap confidence bands for regression curves and their derivatives. Ann. Statist. 31 (2003), 1852–1884. DOI 10.1214/aos/1074290329 | MR 2036392
[4] Deheuvels, P., Derzko, G.: Asymptotic certainty bands for kernel density estimators based upon a bootstrap resampling scheme. In: Statistical Models and Methods for Biomedical and Technical systems, Stat. Ind. Technol., Birkhäuser, Boston MA 2008, pp. 171–186. MR 2462913
[5] Deheuvels, P., Mason, D. M.: General asymptotic confidence bands based on kernel-type function estimators. Statist. Infer. Stoch. Processes 7 (2004), 225–277. DOI 10.1023/B:SISP.0000049092.55534.af | MR 2111291 | Zbl 1125.62314
[6] Dudley, R. M.: Uniform Central Limit Theorems. Cambridge University Press, Cambridge 1999. MR 1720712 | Zbl 0951.60033
[7] Efron, B.: Bootstrap methods: Another look at the jackknife. Ann. Statist. 7 (1979), 1–26. DOI 10.1214/aos/1176344552 | MR 0515681 | Zbl 0406.62024
[8] Einmahl, U., Mason, D. M.: Uniform in bandwidth consistency of kernel-type function estimators. Ann. Statist. 33 (2005), 1380–1403. DOI 10.1214/009053605000000129 | MR 2195639 | Zbl 1079.62040
[9] Giné, E., Koltchinskii, V., Sakhanenko, L.: Kernel density estimators: convergence in distribution for weighted sup-norms. Probab. Theory Related Fields 130 (2004), 167–198. DOI 10.1007/s00440-004-0339-x | MR 2093761 | Zbl 1048.62041
[10] Giné, E., Mason, D.  M.: On local $U$-statistic processes and the estimation of densities of functions of several sample variables. Ann. Statist. 35 (2007), 1105–1145. DOI 10.1214/009053607000000154 | MR 2341700 | Zbl 1175.60017
[11] Hall, P.: The Bootstrap and Edgeworth Expansion. Springer, New York 1992. MR 1145237 | Zbl 0829.62021
[12] Härdle, W., Marron, J. S.: Bootstrap simultaneous error bars for nonparametric regression. Ann. Statist. 19 (1991), 778–796. DOI 10.1214/aos/1176348120 | MR 1105844
[13] Härdle, W., Bowman, A. W.: Bootstrapping in nonparametric regression: Local adaptative smoothing and confidence bands. J. Amer. Statist. Assoc. 83 (1988), 102–110. MR 0941002
[14] Li, G., Datta, S.: A bootstrap approach to nonparametric regression for right censored data. Ann. Inst. Statist. Math. 53 (2001), 708–729. DOI 10.1023/A:1014644700806 | MR 1879606 | Zbl 1003.62036
[15] Mason, D.  M., Newton, M. A.: A rank statistics approach to the consistency of a general bootstrap. Ann. Statist. 20 (1992), 1611–1624. DOI 10.1214/aos/1176348787 | MR 1186268 | Zbl 0777.62045
[16] Nadaraya, E. A.: On estimating regression. Theor. Probab. Appl. 9 (1964), 141–142. DOI 10.1137/1109020 | Zbl 0136.40902
[17] Nolan, D., Pollard, D.: $U$-processes: Rates of convergence. Ann. Statist. 15 (1987), 780–799. DOI 10.1214/aos/1176350374 | MR 0888439 | Zbl 0624.60048
[18] Parzen, E.: On the estimation of probability density and mode. Ann. Math. Statist. 33 (1962), 1065–1076. DOI 10.1214/aoms/1177704472 | MR 0143282
[19] Pollard, D.: Convergence of Stochastic Processes. Springer, New York 1984. MR 0762984 | Zbl 0544.60045
[20] Rosenblatt, M.: Remarks on some nonparametric estimates of a density function. Ann. Math. Statist. 27 (1956), 832–837. DOI 10.1214/aoms/1177728190 | MR 0079873 | Zbl 0073.14602
[21] Vaart, A. W. van der, Wellner, J. A.: Weak Convergence and Empirical Processes with Aplications to Statistics. Springer, New York 1996. MR 1385671
[22] Watson, G. S.: Smooth regression analysis. Sankhyā A 26 (1964), 359–372. MR 0185765 | Zbl 0137.13002
Partner of
EuDML logo