[1] Abou-Jaoude, S.:
Conditions nécessaires et suffisantes de convergence $L_1$ en probabilité de l’histogramme pour une densité. Ann. Inst. H. Poincaré XII (1976), 213–231.
MR 0428574
[2] Barndorff-Nielsen, O.:
Information and Exponential Families in Statistical Theory. Wiley, 1978.
MR 0489333 |
Zbl 0387.62011
[3] Barron, A. R., Györfi, L., Meulen, E. C. van der:
Distribution estimation consistent in total variation and two types of information divergence. IEEE Trans. Inform. Theory 38 (1992), 1437–1454.
DOI 10.1109/18.149496 |
MR 1178189
[4] Cencov, N. N.:
Estimation of unknown density function from observations. (in Russian) Trans. SSSR Acad. Sci. 147 (1962), 45–48.
MR 0143278
[5] Cencov, N. N.:
Categories of mathematical statistics. (in Russian) Trans. SSSR Acad. Sci. 164 (1965), 511–514.
MR 0185710
[6] Cencov, N. N.:
General theory of exponential families of distribution functions. Theory Probab. Appl. 11 (1966), 483–494.
MR 0203847
[7] Cencov, N. N.:
Asymmetric distance between distribution functions, entropy and Pithagoras theorem. (in Russian) Math. Notes 4 (1968), 323–332.
MR 0239631
[8] Cencov, N. N.:
Statistical Decision Rules and Optimal Inference. (in Russian) Nauka, Moscow 1972.
MR 0343398
[9] Cencov, N. N.:
Algebraic foundation of mathematical statistics. Math. Operationsforsch. Statist., Ser. Statistics 9 (1978), 267–276.
MR 0512264
[10] Cencov, N. N.:
On basic concepts of mathematical statistics. Banach Center Publ. 6 (1980), 85-94.
MR 0599373
[11] Cencov, N. N.:
On correctness of the pointwise estimation problem. (in Russian) Theory Probab. Appl. 26 (1981) 15–31.
MR 0605633
[12] Csiszár, I., Fischer, J.:
Informationsentfernungen im Raum der Wahscheinlichkeitsverteilungen. Publ. Math. Inst. Hungar. Acad. Sci. 7 (1962), 159–180.
MR 0191734
[13] Csiszár, I.:
Information-type measures of divergence of probability distributions and indirect observations. Studia Sci. Math. Hungar. 2 (1967), 299–318.
MR 0219345
[14] Csiszár, I.: On topological properties of $f$-divergence. Studia Sci. Math. Hungar. 2 (1967), 329–339.
[15] Devroye, L., Györfi, L.:
Nonparametric Density Estimation: The $L_1$ View. Wiley, 1985. Russian translation: Mir, Moscow, 1988 (Translated from English to Russian by A. Tsybakov).
MR 0944527
[16] Devroye, L., Györfi, L.:
No empirical measure can converge in the total variation sense for all distribution. Ann. Statist. 18 (1990), 1496–1499.
DOI 10.1214/aos/1176347765 |
MR 1062724
[17] Frolov, A. S., Cencov, N. N.:
Application of dependent observations in the Monte Carlo method for recovering smooth curves. (in Russian) In: Proc. 6th Russian Conference on Probability Theory and Mathematical Statistics, Vilnus 1962, pp. 425–437.
MR 0196902
[18] Györfi, L., Páli, I., Meulen, E. C. van der:
There is no universal source code for infinite alphabet. IEEE Trans. Inform. Theory 40 (1994), 267–271.
DOI 10.1109/18.272495 |
MR 1281931
[19] Györfi, L., Páli, I., Meulen, E. C. van der: On universal noiseless source coding for infinite source alphabets. Europ. Trans. Telecomm. 4 (1993), 9–16.
[20] Hartigan, J. A.:
The likelihood and invariance principles. Annals Math. Statist. 38 (1967), 533–539.
MR 0224184
[21] Ibragimov, I. A., Hasminski, R. Z.: On estimation of density. (in Russian) Scientific Notes of LOMI Seminars 98 (1980), 61–86.
[22] Kafka, P., Österreicher, F., Vincze, I.:
On powers of $f$-divergences defining a distance. Studia Sci. Math. Hungar. 26 (1991), 415–422.
MR 1197090
[24] Khosravifard, M., Fooladivanda, D., Gulliver, T. A.: Confliction of the convexity and metric properties in f-divergences. IEICE Trans. Fundamentals E90-A (2007), 1848–1853.
[25] Kolmogorov, A. L.:
Sulla determinazione empirica di una legge di distribuzione. Giornale dell’Istituto Italiano degli Attuari 4 (1933), 83-91.
Zbl 0006.17402
[27] Kullback, S.:
A lower bound for discrimination in terms of variation. IEEE Trans. Inform, Theory 13 (1967), 126–127.
DOI 10.1109/TIT.1967.1053968
[28] Kullback, S.:
Correction to “A lower bound for discrimination in terms of variation". IEEE Trans. Inform. Theory 16 (1970), 652.
DOI 10.1109/TIT.1970.1054514
[30] LeCam, L.:
On some asymptotic properties of maximum likelihood estimates and related Bayes estimates. Univ. Calif. Publ. Statist. 1 (1953), 267–329.
MR 0054913
[32] Morozova, E. A., Cencov, N. N.:
Markov maps in noncommutative probability theory and mathematical statistics. (in Russian) In: Proc. 4th Internat. Vilnius Conf. Probability Theory and Mathematical Statistics, VNU Science Press 2 (1987), pp. 287–310.
MR 0901540 |
Zbl 0654.46058
[33] Nadaraya, E. A.:
On nonparametric estimation of Bayes risk in classification problems. (in Russian) Trans. Georgian Acad. Sci. 82 (1976), 277–280.
MR 0426276
[34] Nadaraya, E. A.:
Nonparametric Estimation of Probability Density and Regression Curve. (in Russian) Tbilisi State University, Georgia 1983.
MR 0783637
[35] Österreicher, F., Vajda, I.:
A new class of metric divergences on probability spaces and its statistical applications. Ann. Inst. Statist. Math. 55 (2003), 639–653.
DOI 10.1007/BF02517812 |
MR 2007803
[36] Sobol, I. M.:
Multidimensional Quadratic Formulas and Haar Functions. (in Russian) Nauka, Moscow 1969.
MR 0422968
[37] Statulavicius, W. W.: On Some Asymptotic Properties of Minimax Density Estimates. (in Russian) PhD. Thesis, Vilnus State University 1986.
[38] Stratonovich, R. L.: Rate of convergence of probability density estimates. (in Russian) Trans. SSSR Acad. Sci., Ser. Technical Cybernetics 6 (1969), 3–15.
[42] Vajda, I.:
On metric divergences of probability measures. Kybernetika 45 (2009), 885–900.
MR 2650071 |
Zbl 1186.94421