[1] Alexandroff, P. S., Hopf, H.: Topologie, Band I. Springer, 1935.
[7] Dušek, Z., Kowalski, O.:
Geodesic graphs on the 13-dimensional group of Heisenberg type. Math. Nachr. 254-255 (2003), 87–96.
MR 1983957 |
Zbl 1019.22004
[8] Dušek, Z., Kowalski, O.:
Light-like homogeneous geodesics and the Geodesic Lemma for any signature. Publ. Math. Debrecen 71, 1-2 (2007), 245–252.
MR 2340046 |
Zbl 1135.53316
[13] Kobayashi, S., Nomizu, N.: Foundations of differential geometry I, II. Wiley Classics Library, 1996.
[14] Kowalski, O., Nikčević, S.Ž.:
On geodesic graphs of Riemannian g.o. spaces. Archiv der Math. 73 (1999), 223–234; Appendix: Archiv der Math. 79 (2002), 158–160.
DOI 10.1007/s000130050032 |
MR 1705019
[15] Kowalski, O., Nikčević, S.Ž., Vlášek, Z.:
Homogeneous geodesics in homogeneous Riemannian manifolds – Examples. Geometry and Topology of Submanifolds, World Sci. Publishing co., River Edge, NJ (2000), 104–112.
MR 1801906
[17] Kowalski, O., Opozda, B., Vlášek, Z.:
A classification of locally homogenous connections on 2-dimensional manifolds via group-theoretical approach. Central European J. Math. 2, 1 (2004), 87–102.
DOI 10.2478/BF02475953 |
MR 2041671
[19] Kowalski, O., Vanhecke, L.:
Riemannian manifolds with homogeneous geodesics. Boll. Un. Math. Ital. 5, B(7) (1991), 189–246.
MR 1110676 |
Zbl 0731.53046
[20] Kowalski, O., Vlášek, Z.:
Homogeneous Riemannian manifolds with only one homogeneous geodesic. Publ. Math. Debrecen 62, 3-4 (2003), 437–446.
MR 2008107 |
Zbl 1060.53043
[21] Kowalski, O., Vlášek, Z.:
On the moduli space of locally homogeneous affine connections in plane domains. Comment. Math. Univ. Carolinae 44, 2 (2003), 229–234.
MR 2026160
[22] Marinosci, R.A.:
Homogeneous geodesics in a three-dimensional Lie group. Comm. Math. Univ. Carolinae 43, 2 (2002), 261–270.
MR 1922126 |
Zbl 1090.53038
[23] Opozda, B.:
A classification of locally homogeneous connections on 2-dimensional manifolds. Differential Geometry and its Applications 21, 2 (2004), 173–198.
MR 2073824 |
Zbl 1063.53024