Previous |  Up |  Next

Article

Keywords:
singular boundary value problem; system of differential equations; nonlocal boundary condition; existence principle; positive solution; $\phi $-Laplacian; Leray–Schauder degree
Summary:
Existence principles for solutions of singular differential systems$ (\phi (u^{\prime }))^{\prime }=f(t,u,u^{\prime }) $ satisfying nonlocal boundary conditions are stated. Here $\phi $ is a homeomorphism $\mathbb {R}^N$ onto $\mathbb {R}^N$ and the Carathéodory function $f$ may have singularities in its space variables. Applications of the existence principles are given.
References:
[1] Agarwal, R. P., O’Regan, D., Staněk, S.: Positive solutions of nonlocal boundary value problems. Glasg. Math. J. 46, 3 (2004), 537–550. DOI 10.1017/S0017089504001983 | MR 2094809
[2] Agarwal, R. P., O’Regan, D., Staněk, S.: Solvability of singular Dirichlet boundary-value problems with given maximal values for positive solutions. Proc. Eding. Math. Soc. 48, 2 (2005), 1–19. DOI 10.1017/S0013091503000774 | MR 2117708 | Zbl 1066.34017
[3] Agarwal, R. P., O’Regan, D., Staněk, S.: General existence principles for nonlocal boundary value problems with $\phi $-Laplacian and their applications. Abstr. Appl. Anal. 2006, ID 96826, 1–30. MR 2211656
[4] Amster, P., De Nápoli, P.: Landesman–Lazer type conditions for a system of $p$-Laplacian like operators. J. Math. Anal. Appl. 326, 2 (2007), 1236–1243. DOI 10.1016/j.jmaa.2006.04.001 | MR 2280977 | Zbl 1119.34010
[5] Bartle, R. G.: A Modern Theory of Integration. AMS Providence, Rhode Island, 2001. MR 1817647 | Zbl 0968.26001
[6] Cabada, A., Pouso, R. L.: Existence theory for functional p-Laplacian equations with variable exponents. Nonlinear Anal. 52, 2 (2003), 557–572. DOI 10.1016/S0362-546X(02)00122-0 | MR 1937640 | Zbl 1029.34018
[7] Chu, J., O’Regan, D.: Multiplicity results for second order non-autonomous singular Dirichlet systems. Acta Appl. Math. 105 (2008), 323–338. DOI 10.1007/s10440-008-9277-4 | MR 2481085
[8] Dambrosio, W.: Multiple solutions of weakly-coupled systems with $p$-Laplacian operators. Result. Math. 36, 1-2 (1999), 34–54. DOI 10.1007/BF03322100 | MR 1706481 | Zbl 0942.34015
[9] Deimling, K.: Nonlinear Functional Analysis. Springer, Berlin, 1985. MR 0787404 | Zbl 0559.47040
[10] Fan, X. L., Fan, X.: A Knobloch-type result for $p(t)$-Laplacian systems. J. Math. Anal. Appl. 282, 2 (2003), 453–464. DOI 10.1016/S0022-247X(02)00376-1 | MR 1989103 | Zbl 1033.34023
[11] Fan, X. L., Wu, H. Q., Wang, F. Z.: Hartman-type results for $p(t)$-Laplacian systems. Nonlinear Anal. 52 (2003), 585–594. DOI 10.1016/S0362-546X(02)00124-4 | MR 1937642 | Zbl 1025.34017
[12] Hewitt, E., Stromberg, K.: Real and Abstract Analysis. Springer, New York, 1965. MR 0367121 | Zbl 0137.03202
[13] Jebelean, P., Precup, R.: Solvability of $p,q$-Laplacian systems with potential boundary conditions. Appl. Anal. 89, 2 (2010), 221–228. DOI 10.1080/00036810902889567 | MR 2598811 | Zbl 1189.34040
[14] Liu, W., Liu, L., Wu, Y.: Positive solutions of singular boundary value problem for systems of second-order differential equations. Appl. Math. Comput. 208 (2008), 511–519. DOI 10.1016/j.amc.2008.12.019
[15] Lü, H., O’Regan, D., Agarwal, R. P.: Positive radial solutions for a quasilinear system. Appl. Anal. 85 (2006), 4, 363–371. DOI 10.1080/00036810500334339 | MR 2196675 | Zbl 1100.34018
[16] Manásevich, R., Mawhin, J.: Periodic solutions for nonlinear systems with $p$-Laplacian like operators. J. Differential Equations 8 (1998), 367–393. DOI 10.1006/jdeq.1998.3425
[17] Manásevich, R., Mawhin, J.: Boundary value problems for nonlinear perturbations of vector $p$-Laplacian-like operators. J. Korean Math. Soc. 37, 5 (2000), 665–685. MR 1783579
[18] Mawhin, J.: Some boundary value problems for Hartman-type perturbations of ordinary vector $p$-Laplacian. Nonlinear Anal. 40 (2000), 497–503. DOI 10.1016/S0362-546X(00)85028-2 | MR 1768905
[19] Mawhin, J., Ureña, A. J.: A Hartman-Nagumo inequality for the vector ordinary p-Laplacian and applications to nonlinear boundary value problems. J. Inequal. Appl. 7, 5 (2002), 701–725. MR 1931262 | Zbl 1041.34011
[20] Nowakowski, A., Orpel, A.: Positive solutions for nonlocal boundary-value problem with vector-valued response. Electronic J. Diff. Equations 2002, 46 (2002), 1–15.
[21] del Pino, M. A., Manásevich, R. F.: $T$-periodic solutions for a second order system with singular nonlinearities. Differential Integral Equations 8 (1995), 1873–1883. MR 1347988
[22] Rachůnková, I., Staněk, S.: General existence principle for singular BVPs and its application. Georgian Math. J. 11, 3 (2004), 549–565. Zbl 1059.34016
[23] Rachůnková, I., Staněk, S., Tvrdý, M.: Singularities and Laplacians in boundary value problems for nonlinear differential equations. In: Handbook of Differential Equations, Ordinary Differential Equations, Vol. 3 (Edited by A. Cañada, P. Drábek, A. Fonda), 607–723, Elsevier, Amsterdam, 2006. DOI 10.1016/S1874-5725(06)80011-8
[24] Rachůnková, I., Staněk, S., Tvrdý, M.: Solvability of Nonlinear Singular Problems for Ordinary Differential Equations. Hindawi, New York, 2008. MR 2572243 | Zbl 1228.34003
[25] Staněk, S.: Multiple solutions of nonlinear functional boundary value problems. Arch. Math. 74 (2000), 452–466. DOI 10.1007/PL00000426 | MR 1753544
[26] Staněk, S.: Multiple solutions for some functional boundary value problems. Nonlinear Anal. 32 (1998), 427–438. DOI 10.1016/S0362-546X(97)00484-7 | MR 1610598
[27] Staněk, S.: A nonlocal boundary value problem with singularities in phase variables. Math. Comput. Modelling 40, 1-2 (2004), 101–116. DOI 10.1016/j.mcm.2003.11.003 | MR 2091529 | Zbl 1068.34019
[28] Staněk, S.: A nonlocal singular boundary value problem for second-order differential equations. Math. Notes (Miskolc) 5, 1 (2004), 91–104. MR 2040979 | Zbl 1048.34041
[29] Staněk, S.: Existence principles for higher order nonlocal boundary-value problems and their applications to singular Sturm–Liouville problems. Ukr. Mat. J. 60 (2008), 240–259. MR 2424641 | Zbl 1164.34341
[30] Šeda, V.: A correct problem at resonance. Differ. Integral Equ. 2, 4 (1989), 389–396. MR 0996746
[31] Šeda, V.: On correctness of the generalized boundary value problems for systems of ordinary differential equations. Arch. Math. (Brno) 26, 2-3 (1990), 181–185. MR 1188278
[32] Zhang, M.: Nonuniform nonresonance at the first eigenvalue of the $p$-Laplacian. Nonlinear Anal. 29, 1 (1997), 41–51. DOI 10.1016/S0362-546X(96)00037-5 | MR 1447568 | Zbl 0876.35039
[33] Wei, Z.: Positive solution of singular Dirichlet boundary value problems for second order differential system. J. Math. Anal. Appl. 328 (2007), 1255–1267. DOI 10.1016/j.jmaa.2006.06.053 | MR 2290050
Partner of
EuDML logo