[1] Bacigál, T., Juráňová, M., Mesiar, R.: On some new constructions of Archimedean copulas and applications to fitting problems. Neural Network World 1 (2010), 10, 81–90.
[2] Capéraá, P., Fougéres, A.-L., Genest, G.:
Bivariate distributions with given extreme value attractor. J. Multivariate Anal. 72 (2000), 1, 30–49.
DOI 10.1006/jmva.1999.1845 |
MR 1747422
[3] De Baets, B., De Meyer, H., Mesiar, R.:
Lipschitz continuity of copulas w.r.t. $L_p$-norms. Nonlinear Anal., Theory, Methods Appl. 72(9-10) (2010), 3722–3731.
MR 2606816 |
Zbl 1189.26015
[6] Genest, C., Rémillard, B.:
Tests of independence or randomness based on the empirical copula process. Test 13 (2004), 335–369.
DOI 10.1007/BF02595777 |
MR 2154005
[8] Genest, C., Ghoudi, K., Rivest, L.-P.:
A semi-parametric estimation procedure of dependence parameters in multivariate families of distributions. Biometrika 82 (1995), 543–552.
DOI 10.1093/biomet/82.3.543 |
MR 1366280
[9] Genest, C., Ghoudi, K., Rivest, L.-P.:
Discussion of the paper by Frees and Valdez (1998). North Amer. Act. J. 2 (1998), 143–149.
MR 2011244
[10] Joe, H.:
Multivariate Models and Dependence Concepts. Chapman and Hall, London 1997.
MR 1462613
[11] Khoudraji, A.: Contributions à l’étude des copules et à la modélisation des valeurs extrémes bivariées. PhD. Thesis, Université Laval, Québec 1995.
[15] Nelsen, R. B.:
An Introduction to Copulas. Second edition. Springer–Verlag, New York 2006.
MR 2197664 |
Zbl 1152.62030
[17] Vorosmarty, C. J., Fekete, B. M., A., B., Tucker:
Global River Discharge, 1807-1991, V. 1.1 (RivDIS). Data set. 1998. Available on-line [
http://www.daac.ornl.gov] from Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, TN, U.S.A. doi:10.3334/ORNLDAAC/199.