Previous |  Up |  Next

Article

Keywords:
multivariate RCA models; parameter estimation; asymptotic variance matrix
Summary:
This work deals with a multivariate random coefficient autoregressive model (RCA) of the first order. A class of modified least-squares estimators of the parameters of the model, originally proposed by Schick for univariate first-order RCA models, is studied under more general conditions. Asymptotic behavior of such estimators is explored, and a lower bound for the asymptotic variance matrix of the estimator of the mean of random coefficient is established. Finite sample properties are demonstrated in a small simulation study.
References:
[1] Aue, A., Horváth, L., Steinebach, J.: Estimation in random coefficient autoregressive models. J. Time Ser. Anal. 27 (2006), 60–67. MR 2235147 | Zbl 1112.62084
[2] Hwang, S. Y., Basawa, I. V.: Parameter estimation for generalized random coefficient autoregressive processes. J. Statist. Plann. Inference 68 (1998), 323–337. DOI 10.1016/S0378-3758(97)00147-X | MR 1629591 | Zbl 0942.62102
[3] Berkes, I., Horváth, L., Ling, S.: Estimation in nonstationary random coefficient autoregressive models. J. Time Ser. Anal. 30 (2009), 395–416. DOI 10.1111/j.1467-9892.2009.00615.x | MR 2536060 | Zbl 1224.62046
[4] Billingsley, P.: The Lindeberg–Lévy theorem for martingales. Proc. Amer. Math. Soc. 12 (1961), 788–792. MR 0126871 | Zbl 0129.10701
[5] Brandt, A.: The stochastic equation $Y_{n+1} = A_n Y_n + B_n$ with stationary coefficients. Adv. Appl. Probab. 18 (1986), 211–220. DOI 10.2307/1427243 | MR 0827336
[6] Bougerol, P., Picard, N.: Strict stationarity of generalized autoregressive processes. Ann. Probab. 20 (1992), 1714–1730. DOI 10.1214/aop/1176989526 | MR 1188039 | Zbl 0763.60015
[7] Davidson, J.: Stochastic Limit Theory. Advanced Texts in Econometrics. Oxford University Press, Oxford 1994. MR 1430804
[8] Feigin, P. D., Tweedie, R. L.: Random coefficient autoregressive processes: A Markov chain analysis of stationarity and finiteness of moments. J. Time Ser. Anal. 6 (1985), 1–14. DOI 10.1111/j.1467-9892.1985.tb00394.x | MR 0792428 | Zbl 0572.62069
[9] Janečková, H., Prášková, Z.: CWLS and ML estimates in a heteroscedastic RCA(1) model. Statist. Decisions 22 (2004), 245–259. DOI 10.1524/stnd.22.3.245.57064 | MR 2125611 | Zbl 1057.62071
[10] Koul, H. L., Schick, A.: Adaptive estimation in a random coefficient autoregressive model. Ann. Statist. 24 (1996), 1025–1052. DOI 10.1214/aos/1032526954 | MR 1401835 | Zbl 0906.62087
[11] Nicholls, D. F., Quinn, B. G.: Random coefficient autoregressive models: An introduction. Lecture Notes in Statistics 11, Springer, New York 1982. DOI 10.1007/978-1-4684-6273-9 | MR 0671255 | Zbl 0497.62081
[12] Schick, A.: $\sqrt{n}$-consistent estimation in a random coefficient autoregressive model. Austral. J. Statist. 38 (1996), 155–160. DOI 10.1111/j.1467-842X.1996.tb00671.x | MR 1442543
[13] Schott, J.: Matrix Analysis for Statistics. Wiley Series in Probability and Statistics, Wiley, New York 1996. MR 2111601
[14] Vaněček, P.: Rate of convergence for a class of RCA estimators. Kybernetika 6 (2006), 698–709. Zbl 1249.60034
[15] Vaněček, P.: Estimators of multivariate RCA models. In: Bull. Internat. Statistical Institute LXII (M. I. Gomes at al., eds.), Instituto Nacional de Estatística, Lisbon 2007, pp. 4027–4030.
[16] Vaněček, P.: Estimation of Random Coefficient Autoregressive Models. PhD Thesis, Charles University, Prague 2008.
Partner of
EuDML logo