Previous |  Up |  Next

Article

Keywords:
wavelet frames; framelet packets; framelets; extension principles
Summary:
This paper obtains a class of tight framelet packets on $L^2(\mathbb R^d)$ from the extension principles and constructs the relationships between the basic framelet packets and the associated filters.
References:
[1] Behera, B.: Multiwavelet packets and frame packets of $L^2(\mathbb R^d)$. Proc. Ind. Acad. Sci., Math. Sci. 111 (2001), 439-463. DOI 10.1007/BF02829617 | MR 1923985
[2] Benedetto, J. J., Treiber, O. M.: Wavelet frames: multiresolution analysis and extension principles. In: L. Debnath, ed., Wavelet Transforms and Time-Frequency Signal Analysis, Birkhäuser (2001), 3-36. MR 1826007 | Zbl 1036.42032
[3] Boor, C., DeVore, R. A., Ron, A.: On the construction of multivariate (pre) wavelets. Construct. Approx. 9 (1993), 123-166. DOI 10.1007/BF01198001 | MR 1215767 | Zbl 0773.41013
[4] Chen, D.: On the splitting trick and wavelet frame packets. SIAM J. Math. Anal. 4 (2000), 726-739. DOI 10.1137/S0036141097323333 | MR 1745145 | Zbl 0966.42024
[5] Chen, Q. J., Cheng, Z. X.: A study on compactly supported orthogonal vector-valued wavelets and wavelet packets. Chaos, Solitons and Fractals 31 (2007), 1024-1034. DOI 10.1016/j.chaos.2006.03.097 | MR 2262193 | Zbl 1142.42014
[6] Christensen, O.: An Introduction to Frames and Riesz Bases. Birkhäuser, Boston (2003). MR 1946982 | Zbl 1017.42022
[7] Chui, C. R., Li, C.: Non-orthogonal wavelet packets. SIAM J. Math. Anal. 24 (1993), 712-738. DOI 10.1137/0524044 | MR 1215434
[8] Cohen, A., Daubechies, I.: On the instability of arbitrary biorthogonal wavelet packets. SIAM J. Math. Anal. 24 (1993), 1340-1354. DOI 10.1137/0524077 | MR 1234020
[9] Coifman, R. R., Meyer, Y., Wickerhauser, M. V.: Size properties of wavelet packets. In: M. B. Ruskai et al., eds., Wavelets and Their Applications. Jones and Bartlett, Boston (1992), 453-470. MR 1187353 | Zbl 0822.42019
[10] Coifman, R. R., Meyer, Y., Wickerhauser, M. V.: Wavelet analysis and signal processing. In: M. B. Ruskai et al., eds., Wavelets and Their Applications. Jones and Bartlett, Boston (1992), 153-178. MR 1187341 | Zbl 0792.94004
[11] Daubechies, I., Han, B.: Pairs of dual wavelet frames from any two refinable functions. Constr. Approx. 20 (2004), 325-352. DOI 10.1007/s00365-004-0567-4 | MR 2057532 | Zbl 1055.42025
[12] Daubechies, I., Han, B., Ron, A., Shen, Z.: Framelets: MRA-based constructions of wavelet frames. Appl. Comput. Harmon. Anal. 1 (2003), 1-46. DOI 10.1016/S1063-5203(02)00511-0 | MR 1971300 | Zbl 1035.42031
[13] Han, B.: Compactly supported tight wavelet frames and orthonormal wavelets of exponential decay with a general dilation matrix. J. Comput. Appl. Math. 155 (2003), 43-67. DOI 10.1016/S0377-0427(02)00891-9 | MR 1992289 | Zbl 1021.42020
[14] Han, B.: Dual multiwavelet frames with high balancing order and compact fast frame transform. Appl. Comput. Harmon. Anal. 26 (2009), 14-42. DOI 10.1016/j.acha.2008.01.002 | MR 2467933 | Zbl 1154.42007
[15] Han, B.: On dual wavelet tight frames. Appl. Comput. Harmon. Anal. 4 (1997), 380-413. DOI 10.1006/acha.1997.0217 | MR 1474096 | Zbl 0880.42017
[16] Han, B., Mo, Q.: Symmetric MRA tight wavelet frames with three generators and high vanishing moments. Appl. Comput. Harmon. Anal. 18 (2005), 67-93. DOI 10.1016/j.acha.2004.09.001 | MR 2110513 | Zbl 1057.42026
[17] Long, R., Chen, W.: Wavelet basis packets and wavelet frame packets. J. Fourier Anal. Appl. 3 (1997), 239-256. DOI 10.1007/BF02649111 | MR 1448338 | Zbl 0882.42022
[18] Ron, A., Shen, Z.: Affine systems in $L_2(\mathbb R^d)$: the analysis of the analysis operator. J. Functional Anal. Appl. 148 (1997), 408-447. DOI 10.1006/jfan.1996.3079 | MR 1469348
[19] Ron, A., Shen, Z.: Compactly supported tight affine spline frames in $L_2(\mathbb R^d)$. Math. Comput. 67 (1998), 191-207. DOI 10.1090/S0025-5718-98-00898-9 | MR 1433269
[20] Selesnick, I. W., Abdelnour, A. F.: Symmetric wavelet tight frames with two generators. Appl. Comput. Harmon. Anal. 17 (2004), 211-225. DOI 10.1016/j.acha.2004.05.003 | MR 2082159 | Zbl 1066.42027
[21] Shen, Z.: Nontensor product wavelet packets in $L^2(\mathbb R^s)$. SIAM J. Math. Anal. 26 (1995), 1061-1074. DOI 10.1137/S0036141093243642 | MR 1338374
Partner of
EuDML logo