Previous |  Up |  Next

Article

Keywords:
local Morrey-type spaces; complementary local Morrey-type spaces; associated spaces; dual spaces; multidimensional reverse Hardy inequalities
Summary:
In this paper we show that associated spaces and dual spaces of the local Morrey-type spaces are so called complementary local Morrey-type spaces. Our method is based on an application of multidimensional reverse Hardy inequalities.
References:
[1] Burenkov, V. I., Guliyev, H. V.: Necessary and sufficient conditions for boundedness of the maximal operator in the local Morrey-type spaces. Stud. Math. 163 (2004), 157-176. DOI 10.4064/sm163-2-4 | MR 2047377
[2] Burenkov, V. I., Guliyev, H. V., Guliyev, V. S.: On boundedness of the fractional maximal operator from complementary Morrey-type spaces to Morrey-type spaces. The Interaction of Analysis and Geometry. International School-Conference on Analysis and Geometry, Novosibirsk, Russia, August 23--September 3, 2004 American Mathematical Society (AMS) Providence Contemporary Mathematics 424 (2007), 17-32. MR 2316329
[3] Burenkov, V. I., Guliyev, H. V., Guliyev, V. S.: Necessary and sufficient conditions for boundedness of fractional maximal operators in local Morrey-type spaces. J. Comput. Appl. Math. 208 (2007), 280-301. DOI 10.1016/j.cam.2006.10.085 | MR 2347750
[4] Burenkov, V. I., Guliyev, H. V., Tararykova, T. V., Serbetci, A.: Necessary and sufficient conditions for the boundedness of genuine singular integral operators in the local Morrey-type spaces. Dokl. Math. 78 (2008), 651-654 Translation from Dokl. Akad. Nauk, Ross. Akad. Nauk 422 (2008), 11-14. DOI 10.1134/S1064562408050025 | MR 2475077
[5] Burenkov, V. I., Guliyev, V. S.: Necessary and sufficient conditions for the boundedness of the Riesz potential in local Morrey-type spaces. Potential Anal. 30 (2009), 211-249. DOI 10.1007/s11118-008-9113-5 | MR 2480959 | Zbl 1171.42003
[6] Burenkov, V. I., Gogatishvili, A., Guliyev, V. S., Mustafayev, R. Ch.: Boundedness of the fractional maximal operator in Morrey-type spaces. Complex Var. Elliptic Equ. 55 (2010), 739-758. MR 2674862
[7] Evans, W. D., Gogatishvili, A., Opic, B.: The reverse Hardy inequality with measures. Math. Inequal. Appl. 11 (2008), 43-74. MR 2376257 | Zbl 1136.26004
[8] Gogatishvili, A., Mustafayev, R.: The multidimensional reverse Hardy inequalities. Math. Inequal. & Appl. 14 (2011) (to appear) Preprint, Institute of Mathematics, AS CR, Prague 2009-5-27. Available at http://www.math.cas.cz/preprint/pre-179.pdf MR 2853078
[9] Guliyev, V. S.: Integral operators on function spaces on the homogeneous groups and on domains in $\Bbb R^n$. Doctor's degree dissertation Mat. Inst. Steklov Moscow (1994), Russian.
[10] Guliyev, V. S.: Function Spaces, Integral Operators and Two Weighted Inequalities on Homogeneous Groups. Some Applications. Baku (1999), Russian.
[11] Guliyev, V. S., Mustafayev, R. Ch.: Integral operators of potential type in spaces of homogeneous type. Dokl. Math. 55 (1997), 427-429 Translation from Dokl. Akad. Nauk, Ross. Akad. Nauk 354 (1997), 730-732. MR 1473130
[12] Guliyev, V. S., Mustafayev, R. Ch.: Fractional integrals on spaces of homogeneous type. Anal. Math. 24 (1998), 1810-200 Russian.
Partner of
EuDML logo