[2] Cattaneo, C.:
Sulla Conduzione del Calore. Atti Semin. Mat. Fis., Univ. Modena 3 (1949), 83-101 Italian.
MR 0032898 |
Zbl 0035.26203
[3] Hadeler, K P.: Random walk systems and reaction telegraph equations. In: Dynamical Systems and their Applications S. van Strien, S. V. Lunel Royal Academy of the Netherlands (1995).
[4] Haus, H. A.: Waves and Fields in Optoelectronics. Prentice Hall (1984).
[5] Kato, T.:
Abstract Differential Equations and Nonlinear Mixed Problems. Fermian Lectures. Academie Nazionale dei Licei Pisa (1985).
MR 0930267
[7] Li, Ta-Tsien:
Nonlinear Heat Conduction with Finite Speed of Popagation. Proceedings of the China-Japan Symposium on Reaction Diffusion Equations and their Applcations to Computational Aspects. World Scientific Singapore (1997).
MR 1654353
[8] Matsumura, A.:
On the asymptotic behavior of solutions to semi-linear wave equations. Publ. Res. Inst. Mat. Sci., Kyoto Univ. 12 (1976), 169-189.
DOI 10.2977/prims/1195190962 |
MR 0420031
[9] Matsumura, A.:
Global existence and asymptotics of the solutions of second-order quasilinear hyperbolic equations with first-order dissipation. Publ. Res. Inst. Mat. Sci., Kyoto Univ. 13 (1977), 349-379.
DOI 10.2977/prims/1195189813 |
MR 0470507
[11] Milani, A.:
Global existence via singular perturbations for quasilinear evolution equations. Adv. Math. Sci. Appl. 6 (1996), 419-444.
MR 1411976 |
Zbl 0868.35008
[12] Mizohata, S.:
The Theory of Partial Differential Equations. Cambridge University Press London (1973).
MR 0599580 |
Zbl 0263.35001
[13] Moser, J.:
A rapidly convergent iteration method and non-linear differential equations. Ann. Sc. Norm. Super. Pisa, Sci. Fis. Mat., III. Ser. 20 (1966), 265-315.
MR 0199523 |
Zbl 0174.47801
[16] Racke, R.:
Lectures on Nonlinear Evolution Equations. Initial Value Problems. Vieweg Braunschweig (1992).
MR 1158463 |
Zbl 0811.35002