Keywords:
system of third order nonlinear neutral delay differential equations; contraction mapping; completely continuous mapping; condensing mapping; uncountably many bounded positive solutions
Summary:
In this paper, we aim to study the global solvability of the following system of third order nonlinear neutral delay differential equations $$ \aligned & \frac{d}{dt}\Big\{r_i(t)\frac{d}{dt}\Big[\lambda_i(t)\frac{d}{dt} \Big(x_i(t)-f_i(t,x_1(t-\sigma_{i1}),x_2(t-\sigma_{i2}), x_3(t-\sigma_{i3}))\Big)\Big]\Big\} \cr & \qquad \quad + \frac{d}{dt}\Big[r_i(t)\frac{d}{dt}g_i(t,x_1(p_{i1}(t)), x_2(p_{i2}(t)),x_3(p_{i3}(t)))\Big] \cr & \qquad \quad + \frac{d}{dt}h_i(t,x_1(q_{i1}(t)),x_2(q_{i2}(t)), x_3(q_{i3}(t))) \cr & = l_i(t,x_1(\eta_{i1}(t)),x_2(\eta_{i2}(t)),x_3(\eta_{i3}(t))), \quad t\ge t_0,\quad i\in \{1,2,3\} \endaligned $$ in the following bounded closed and convex set $$ \aligned \Omega(a,b)=\Big\{x(t)=\big(x_1(t),x_2(t),x_3(t)\big)\in C([t_0,+\infty),\Bbb{R}^3):a(t)\le x_i(t)\le b(t), \qquad \forall\, t\geq t_0, i\in\{1,2,3\}\Big\}, \qquad \endaligned $$ where $\sigma_{ij}>0$, $r_i,\lambda_i,a,b\in C([t_0,+\infty),\Bbb{R}^{+})$, $f_i,g_i,h_i,l_i\in C([t_0,+\infty)\times\Bbb{R}^3,\Bbb{R})$, \newline $p_{ij},q_{ij},\eta_{ij}\in C([t_0,+\infty),\Bbb{R})$ for $i,j\in\{1,2,3\}$. By applying the Krasnoselskii fixed point theorem, the Schauder fixed point theorem, the Sadovskii fixed point theorem and the Banach contraction principle, four existence results of uncountably many bounded positive solutions of the system are established.
References:
[2] Erbe L.H., Kong W.K., Zhang B.G.: Oscillatory Theory for Functional Differential Equations. Marcel Dekker, New York, 1995.
[6] Levitan B.M.:
Some problems of the theory of almost periodic functions I. Uspekhi Mat. Nauk 2(5) (1947), 133–192.
MR 0027358
[9] Parhi N., Rath R.N.:
Oscillation critiria for forced first order neutral differential equations with variable coefficients. J. Math. Anal. Appl. 256 (2001), 525–541.
DOI 10.1006/jmaa.2000.7315 |
MR 1821755
[13] Zhang W.P., Feng W., Yan J.R., Song J.S.:
Existence of nonoscillatory solutions of first-order linear neutral delay differential equations. Compu. Math. Appl. 49 (2005), 1021–1027.
MR 2141246 |
Zbl 1087.34539