[2] Lucheta C., Miller E., Reiter C.:
Digraphs from powers modulo $p$. Fibonacc Quart. 34 (1996), 226–239.
MR 1390409 |
Zbl 0855.05067
[3] Burton D.M.:
Elementary Number Theory. McGraw-Hill, 2007.
Zbl 1084.11001
[4] Chartrand G., Oellermann O.R.:
Applied and Algorithmic Graph Theory. McGraw-Hill, New York, 1993.
MR 1211413
[5] Kramer-Miller J.: Structural properties of power digraphs modulo $n$. in Proceedings of the 2009 Midstates Conference for Undergraduate Research in Computer Science and Mathematics, Oberlin, Ohio, 2009, pp. 40–49.
[9] Somer L., Křížek M.:
On semi-regular digraphs of the congruence $x^{k}\equiv y \pmod n$. Comment. Math. Univ. Carolin. 48 (2007), no. 1, 41–58.
MR 2338828
[10] Somer L., Křížek M.:
On symmetric digraphs of the congruence $x^{k}\equiv y \pmod n$. Discrete Math. 309 (2009), 1999–2009.
DOI 10.1016/j.disc.2008.04.009
[11] Szalay L.:
A discrete iteration in number theory. BDTF Tud. Közl. 8 (1992), 71–91.
Zbl 0801.11011
[12] MATLAB,: The language of technical computing. version 7.0.0.19920 (R14).
[13] Deo N.:
Graph theory with Application to Engineering and Computer Sciences. Prentice-Hall of India private Limited, 1990.
MR 0360322
[15] Husnine S.M., Ahmad U., Somer L.:
On symmetries of power digraphs. Utilitas Mathematica(to appear).
MR 2840802