Article
Keywords:
monotone measure; monotonicity formula; tangent measure
Summary:
We show that for every $\varepsilon > 0$, there is a set $A\subset \mathbb R^2$ such that $\mathcal H^1 \llcorner A$ is a monotone measure, the corresponding tangent measures at the origin are not unique and $\mathcal H^1 \llcorner A$ has the $1$-dimensional density between $1$ and $3+\varepsilon $ everywhere on the support.
References:
[1] Černý R.:
Local monotonicity of measures supported by graphs of convex functions. Publ. Mat. 48 (2004), 369–380.
MR 2091010
[2] Černý R., Kolář J., Rokyta M.:
Concentrated monotone measures with non-unique tangential behaviour in $R^3$. Czechoslovak Math. J.(to appear).
MR 2886262
[4] Mattila P.:
Geometry of Sets and Measures in Euclidean Spaces. Cambridge University Press, Cambridge, 1995.
MR 1333890 |
Zbl 0911.28005
[5] Preiss D.:
Geometry of measures in $\mathbb R^n$: Distribution, rectifiability and densities. Ann. Math. 125 (1987), 537–643.
DOI 10.2307/1971410 |
MR 0890162
[6] Simon L.:
Lectures on geometric measure theory. Proc. C.M.A., Australian National University Vol. 3, 1983.
MR 0756417 |
Zbl 0546.49019