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Monotone measures with bad

tangential behavior in the plane

Robert Černý, Jan Kolář, Mirko Rokyta

Abstract. We show that for every ε > 0, there is a set A ⊂ R
2 such that H1

xA is
a monotone measure, the corresponding tangent measures at the origin are not
unique and H1

xA has the 1-dimensional density between 1 and 3+ ε everywhere
on the support.

Keywords: monotone measure, monotonicity formula, tangent measure

Classification: 49J45

1. Introduction

In this paper, we study the existence of monotone measures with bad tangential
behavior satisfying some additional assumptions natural for minimal surfaces.
The question about their existence is motivated by open problems on existence
and regularity of minimal surfaces, see [6].

Definition 1.1. Let µ be a Radon measure on R
n and k ∈ N. We say that µ

is k-monotone if the function r 7→ µB(z,r)
rk is nondecreasing on (0,∞) for every

z ∈ R
n.

Definition 1.2. Let µ be a Radon measure on R
n, z ∈ sptµ and k ≤ n. We say

that ν is a k-tangent measure of µ at z (we write ν ∈ Tankz µ), if ν is a non-zero
Radon measure on R

n and if there is a sequence {rj}∞j=1, rj > 0, rj → 0 as j → ∞
such that

1

rkj
Tz,rj

(µ) → ν vaguely as j → ∞, where Tz,r(x) =
x− z

r
,

i.e. if every continuous function ϕ on R
n with a compact support satisfies

lim
j→∞

1

rkj

∫

Rn

ϕ
(x− z

rj

)

dµ(x) =

∫

Rn

ϕdν.
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Instead of 1-monotone and 1-tangent we simply write monotone and tangent .
The tangent measures were introduced by Preiss in [5]. If µ is a k-monotone

measure, then µ has a finite k-dimensional density θkzµ = limr→0+

µB(z,r)
ωkrk , where

ωk is the volume of the unit ball in R
k. If the density satisfies θkzµ ∈ (0,∞), then

our definition of tangent measures coincides up to a multiplicative constant with
the one in [4, 14.1].

For better understanding of the problems concerning the minimal surfaces, it
is important to study monotone measures with non-unique tangent measures at
a point of the support.

The first such a measure was given by Kolář in [3]. However, this measure
does not satisfy the density assumption natural for minimal surfaces. Therefore
there were further attempts to construct other k-monotone measures with bad
tangential behavior, i.e. find for fixed ε > 0 a Radon measure µ on R

n satisfying
the following additional properties (we suppose that the origin 0 ∈ sptµ is the
point with non-unique k-tangent measures to µ):
(1)

θkzµ ≥ 1 for every z ∈ sptµ (then µ is called a concentrated measure),

(2) θkzµ = 1 for every z ∈ sptµ \ {0}

and

(3) θk0µ ≤ 1 + ε.

A k-monotone measure with non-unique tangential behavior satisfying all assump-
tions (1), (2) and (3) has not been constructed yet. However it is believed that
such a measure exists. Let us also note that its existence would disprove the con-
jecture that the monotonicity is a sufficient assumption for the Allard regularity
theorem, see [6].

Let us recall one of the partial results concerning the above problem. A mono-
tone measure with non-unique tangential behavior satisfying (1) and weakened
versions of (2) and (3) was constructed by Kirchheim using the method from [3].
This result was not published. Let us give the main ideas of the construction.

Fix a > 0 and define a symmetrical pair of logarithmic spirals by

Γ+
a (t) = (exp (at) cos t, exp (at) sin t), t ∈ R

and

Γ−
a (t) = (− exp (at) cos t,− exp (at) sin t), t ∈ R.

Next, we define the measures

µ+
a = H1

x [Γ+
a ], µ−

a = H1
x [Γ−

a ] and µa = µ+
a + µ−

a ,

where we use the notation [Γ+
a ] = {Γ+

a (t) : t ∈ R}, etc.
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One can easily see that µa has non-unique tangential behavior at the origin (see
the third section for a detailed proof), the density assumptions are satisfied (for
sufficiently large a), but unfortunately µa is not monotone (see the last section for
the proof). However, using a careful Taylor expansion with a computer algebra
package, Kirchheim proved the “local monotonicity” of µa, it is the existence of

δ = δ(a) > 0 such that t 7→ µaB(z,r)
r

is nondecreasing as long as r < δ|z|. Then
he used the compensation method from [3] (one adds a suitable “very” monotone
measure, see for example Lemma 2.3) showing that there is a finite number of lines
passing through the origin such that H1 restricted to the union of these lines, [Γ+

a ]
and [Γ−

a ], is monotone. It is, the final measure is monotone, it has non-unique
tangential behavior, condition (1) is satisfied, condition (2) is satisfied up to the
points of intersection of the spirals and the lines and we have a version of (3) with
the upper bound slightly larger than one plus the number of lines.

The goal of this paper is to give the following three improvements concerning
Kirchheim’s result. First, we give a short proof of the “local monotonicity” of µa
(see Proposition (5.1)). Second, we obtain an estimate concerning above men-
tioned δ(a) (not only the existence). Let us note that our estimate enables us to
show that it is enough to use two lines only as a compensation for the monotonic-
ity (see Theorem 1.3) which is in fact the smallest possible number of lines (see
the last section). Third, using the Definition 1.1 for large radii, we conclude that
our final measure is monotone.

Now, let us state our main result. Set

L1 = {(t cos(π3 ), t sin(π3 )) : t ∈ R} and L2 = {(t cos(2π
3 ), t sin(2π

3 )) : t ∈ R}.

Theorem 1.3. Let ε > 0. Then there is K = K(ε) > 0 such that for every

a > K, the measure µa satisfies

µa + H1
x (L1 ∪ L2) is monotone,

µa + H1
x (L1 ∪ L2) does not have a unique tangent measure at the origin,

θ1z(µa) = 1 for all z ∈ sptµa \ {(0, 0)},

θ1z(H1
x (L1 ∪ L2)) = 1 for all z ∈ L1 ∪ L2 \ {(0, 0)},

θ1(0,0)(µa + H1
x (L1 ∪ L2)) ≤ 3 + ε.

A similar problem is studied in [2], where a version of logarithmic spirals in R
3

is given.
We refer to [4], [5] and [6] for other information concerning the geometry of

measures and the Monotonicity Formula.
The paper is organized as follows. In the third section we study the tangential

behavior. The next two sections are devoted to the proof of the monotonic-
ity which is the most difficult part of the proof of Theorem 1.3. We prove the

monotonicity showing that the lower derivative of r 7→ (µa+H1
x(L1 ∪L2))B(z,r)

r
is
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non-negative for every pair (z, r), z ∈ R
2, r > 0. When checking this pointwise

property, we distinguish several cases. In the fourth section we consider the cases
concerning z and r such that the proof of the non-negativity of the lower deriv-
ative is just a straightforward computation. The fifth section is devoted to very
small radii (this is the difficult case that Kirchheim’s result concerns) where we
apply a technique from [1]. In the last section we show that the measure µa is
not monotone.

2. Preliminaries

Notation. The scalar product of x, y ∈ R
2 is denoted by x · y, the Euclidean

norm of x is |x|. Further, x1 and x2 are the first and the second coordinates of x
(this notation is used in the main part of the paper, while in the last section the
meaning of the lower index is different as specified below). Set

B(z, r) = {x ∈ R
2 : |x− z| ≤ r}, S(z, r) = {x ∈ R

2 : |x− z| = r}.

When z = (0, 0), we simply write B(r) and S(r).
The 1-dimensional Hausdorff measure is denoted by H1. If A is a Borel set and

µ is a Radon measure, then µ x A is the restriction of µ to A, i.e. (µ x A)(M) =
µ(M ∩ A). If I is an interval and Γ : I 7→ R

n is a continuous curve, then
[Γ] = {Γ(t) : t ∈ I}.

Next, for given z and r we are interested in the points of intersection of S(z, r)
and [Γ+

a ] (or [Γ−
a ]) with the maximal or minimal distance from the center z. The

following three points are important for us.
If S(z, r) ∩ [Γ+

a ] 6= ∅, then let us denote

(4) ξ = Γ+
a (τ) ∈ S(z, r) ∩ [Γ+

a ] such that |ξ| ≥ |θ| for all θ ∈ S(z, r) ∩ [Γ+
a ],

and

(5) ξ̃ = Γ+
a (τ̃ ) ∈ S(z, r) ∩ [Γ+

a ] such that |ξ̃| ≤ |θ| for all θ ∈ S(z, r) ∩ [Γ+
a ].

If S(z, r) ∩ [Γ−
a ] 6= ∅, then we pick

(6) η = Γ−
a (σ) ∈ S(z, r) ∩ [Γ−

a ] such that |η| ≥ |θ| for all θ ∈ S(z, r) ∩ [Γ−
a ].

As z ∈ S(1), there is ϑ ∈ [0, 2π) such that z = (cosϑ, sinϑ). Let us further set
ϕ = τ − ϑ, ψ = σ − ϑ where τ and σ are given above.

In the last section, we work with a sequence of radii {rj}. In this case ξj , τj ,
ϕj , etc. correspond to the radius rj (it is, ξj , etc. no longer denotes the j-th
coordinate of a point but the j-th member of a sequence).

Some notes on the logarithmic spirals. As

|Γ̇+
a (t)|

∂|Γ+
a (t)|
∂t

=

√

(aeat cos t− eat sin t)2 + (aeat sin t+ eat cos t)2

aeat
=

√

1 +
1

a2
,
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and similarly for Γ−
a , we obtain for 0 ≤ c1 ≤ c2

(7)

µ+
a ({x ∈ R

2 : c1 ≤ |x| ≤ c2}) = µ−
a ({x ∈ R

2 : c1 ≤ |x| ≤ c2}) =

√

1 +
1

a2
(c2− c1).

Hence, for any r > 0, we have

(8)
µaB(r)

2r
=

√

1 +
1

a2
.

The logarithmic spirals are self-similar, in the sense that multiplication of the
coordinates by the same positive number corresponds to some rotation. More
precisely, if we define

Γ+
a,t0

(t) = (exp (a(t− t0)) cos t, exp (a(t− t0)) sin t), t ∈ R,

Γ−
a,t0

(t) = (− exp (a(t− t0)) cos t,− exp (a(t− t0)) sin t), t ∈ R

and

µa,t0 = H1
x ([Γ+

a,t0
] ∪ [Γ−

a,t0
]),

then for every ̺ > 0 we have

(9)
1

̺
T(0,0),̺(µa) = µa,t0 with t0 =

ln ̺

a
.

Some notes on monotonicity. Let us recall some well known facts concerning
the monotonicity of Radon measures. Let Γ : [a, b] 7→ R

n be a regular C1-curve

and let ν = H1
x [Γ]. If we want to prove that r 7→ νB(z,r)

r
is nondecreasing on

(0,∞) for some z ∈ R
n, then it is enough to show that

(10) Dr

νB(z, r)

r
=

1

r2
(

rDr νB(z, r) − νB(z, r)
)

is nonnegative on (0,∞). Here we use the notation Dr f(r) = lim inf
δ→0

f(r+δ)−f(r)
δ

.

Notice that the condition Dr
νB(z,r)

r
≥ 0 is satisfied when νB(z, r) ≤ 2r and

Γ(a),Γ(b) /∈ B(z, r) (if νB(z, r) = 0 then the proof is trivial and if 0 < νB(z, r) ≤
2, then there are at least two points of intersection S(z, r) ∩ Γ((a, b)) and the
contribution of each of them to Dr νB(z, r) is at least 1). We use this criterion
very often.

We say that a measure ν is monotone at (z, r) if Dr
νB(z,r)

r
≥ 0. The super-

additivity of the lower derivative Dr implies that a sum of monotone measures
at (z, r) is again monotone at (z, r).

We also need the following result inspired by the proof of [1, Proposition 2.2]

telling us when we have Dr
νB(z,r)

r
> 0 for ν being H1 restricted to the graph of

a function.
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Lemma 2.1. Let δ1, δ2 > 0 and f ∈ C1([−δ1, δ2],R). Set µf = H1
x {(x, f(x)) :

x ∈ [−δ1, δ2]}. Fix z = (0, h), with h ∈ R, and fix r > 0 small enough so that

(−δ1, f(−δ1)), (δ2, f(δ2)) /∈ B(z, r). Suppose that the following is satisfied.

(i) For all x ∈ (−δ1, δ2) we have the inequality

(11)
2|x|

√

1 + f ′2(x)

1 +
√

1 + f ′2(x)
− µf ({(t, s) : t ∈ I(0, x), s ∈ R}) > 0,

where I(0, x) denotes the closed interval with the endpoints 0 and x.

(ii) If µfB(z, r) > 0, let x1, x2 ∈ (−δ1, δ2) be such that (x1, f(x1)), (x2, f(x2)) ∈
S(z, r) and x1 ≤ x ≤ x2 for every x ∈ (−δ1, δ2) such that (x, f(x)) ∈ S(z, r)
and assume that x1, x2 have the following property: for both i = 1, 2 the angle

between the tangent to the graph of f at (xi, f(xi)) and the line joining z and

(xi, f(xi)) is less than π
2 .

Then µf is monotone at (z, r).

Proof: Since a sum of monotone measures at (z, r) is a monotone measure at
(z, r), it is enough to consider even functions, δ1 = δ2 and x > 0. Suppose h ∈ R,
r > 0 are fixed and µfB(z, r) > 0 (otherwise the proof is trivial by (10)).

We denote x = max{t ∈ R : (t, f(t)) ∈ B(z, r)}. Then obviously x ∈ (0, δ2).

Set η(x) = arctan f ′(x), ϕh(x) = arctan f(x)−h
x

. Therefore cos(η(x) − ϕh(x)) > 0
(see assumption (ii)) and we have

∂µfB(z, r)

∂r
≥ 2

1

cos(η(x) − ϕh(x))
.

As r = x
cos(ϕh(x)) , we obtain

(12)

∂µfB(z, r)

∂r
r ≥ 2

cos(η(x) − ϕh(x))

x

cos(ϕh(x))

=
4x

cos(η(x) − 2ϕh(x)) + cos(η(x))

≥ 4x

1 + cos(η(x))
=

4x

1 + 1√
1+f ′2(x)

=
4x

√

1 + f ′2(x)

1 +
√

1 + f ′2(x)

and the proof follows from (10), (12) and the assumptions of the lemma. �

Remark 2.2. If f satisfies |f ′| ≤ 1
4 on (−δ1, δ2), then Lemma 2.1 holds without

assumption (ii).

Proof: Since a sum of monotone measures at (z, r) is a monotone measure at
(z, r), it is enough to consider an even function and δ1 = δ2. Fix r > 0, z = (0, h),
with h ∈ R, such that (δ2, f(δ2)) /∈ B(z, r). If µfB(z, r) = 0, then µf is monotone
at (z, r). Otherwise there is x0 ∈ (0, δ2) such that (x0, f(x0)) ∈ S(z, r) and
(x, f(x)) /∈ S(z, r) whenever |x| ∈ (x0, δ2).
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Now, we distinguish two cases. First, if |h − f(0)| < 3
4x0 then condition (ii)

is satisfied (since |f ′| < 1, the angle between (1, 0) and the tangent to the graph
at (x0, f(x0)) is plainly less than π

4 ; since |f ′| ≤ 1
4 we have |f(x0) − f(0)| ≤ 1

4x0,
hence |h− f(x0)| ≤ |h− f(0)|+ |f(0)− f(x0)| < x0, thus the angle between (1, 0)
and the vector (x0, f(x0)) − (0, h) is less than π

4 ).

Second, let |h−f(0)| ≥ 3
4x0. Assumption |f ′| ≤ 1

4 implies |f(x0)−f(0)| ≤ 1
4x0,

hence

(13) r =
√

x2
0 + (h− f(x0))2 ≥

√

x2
0 +

(1

2
x0

)2

≥ 11

10
x0.

Since µfB(z, r) > 0, there are at least two points in S(z, r) ∩ sptµf . Hence
Dr µfB(z, r) ≥ 2 and thus from (13) and |f ′| ≤ 1

4 we obtain

Dr

µfB(z, r)

r
=

1

r2
(

rDr µfB(z, r) − µfB(z, r)
)

≥ 1

r2

(

2
11

10
x0 − 2

√

1 +
(1

4

)2

x0

)

≥ 0.

Therefore µf is monotone at (z, r). �

Our last auxiliary result concerns the monotonicity of H1
x (L1 ∪ L2).

Lemma 2.3. The measure H1
x (L1 ∪ L2) is monotone. Moreover, if z ∈ S(1)

and r ≥ 9
10 , then

∂

∂r

(H1
x (L1 ∪ L2))B(z, r)

r
≥ 1

200r3
.

Proof: For a line L and a center z, we denote d = dist(z, L). If r > d, then

(14)
∂

∂r

(H1
x L)B(z, r)

r
=

∂

∂r

2
√
r2 − d2

r
= 2

d2

r2
√
r2 − d2

≥ 2
d2

r3
.

Since, in addition, (H1
x L)B(z, r) = 0 for 0 < r ≤ d, we see that H1

x L is
monotone and the first assertion of the lemma follows.

Let us prove estimate (14). Recall z = (cosϑ, sinϑ). In case ϑ ∈ [0, π3 − π
60 ],

we have

dist(z, L1) = sin(π3 − ϑ) ∈ [sin( π60 ), sin(π3 )] ⊂ [ 1
20 ,

9
10 ]

and thus for r ≥ 9
10 we obtain from (14)

∂

∂r

(H1
x (L1 ∪ L2))B(z, r)

r
≥ ∂

∂r

(H1
x L1)B(z, r)

r
≥ 2

sin2( π60 )

r3
≥ 1

200r3
.

If ϑ ∈ [π3 − π
60 ,

π
2 ], then

dist(z, L2) = sin(2π
3 − ϑ) ∈ [sin(π6 ), sin(π3 + π

60 )] ⊂ [ 12 ,
9
10 ],
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hence for r ≥ 9
10 we have by (14)

∂

∂r

(H1
x (L1 ∪ L2))B(z, r)

r
≥ ∂

∂r

(H1
x L2)B(z, r)

r
≥ 2

sin2
(

π
6

)

r3
≥ 1

2r3
.

Thus, we are done in the first quadrant. In any other quadrant the proof is similar
(see the definition of L1 and L2). �

3. Tangential behavior

Proposition 3.1.

Tan1
(0,0)(µa + H1

x (L1 ∪ L2)) = {µa,t0 + H1
x (L1 ∪ L2) : 0 ≤ t0 < π}.

Proof: Using (9) one can easily prove that

Tan1
(0,0)(µa + H1

x (L1 ∪ L2)) ⊃ {µa,t0 + H1
x (L1 ∪ L2) : 0 ≤ t0 < π}.

Indeed, since we plainly have for any t0 ∈ [0, π) the identity

(15) µa,t0 = µa,t0+kπ for all k ∈ Z,

it is enough to take the sequence of blow-ups corresponding to ̺j = exp(a(t0 −
jπ)), j ∈ N.

The opposite inclusion is obtained by a suitable choice of a test function. As-
sume ̺j > 0 for j ∈ N, ̺j → 0 and 1

̺j
T(0,0),̺j

(µa + H1
x (L1 ∪ L2)) vaguely

converges. Set tj =
ln ̺j

a
. Hence from (9) and an obvious identity

1

̺j
T(0,0),̺j

(H1
x (L1 ∪ L2)) = H1

x (L1 ∪ L2)

we see that µa,tj vaguely converges. Let ψ : [0,∞) 7→ R be a continuous function

with a compact support satisfying ψ ≥ 0, ψ(0) = 0 and
∫ ∞
0
ψ(t) dt = 1. We define

on R
2 a continuous test function with a compact support by ϕ1(0, 0) = 0 and

ϕ1(x) = ψ(|x|)
∣

∣

∣

x1

|x| cos
( ln |x|

a

)

+
x2

|x| sin
( ln |x|

a

)
∣

∣

∣
for |x| > 0.

If t ∈ R and x = Γ+
a,tj

(t) or x = Γ−
a,tj

(t) we have

ϕ1(x) = ψ(|x|)| cos t cos(t− tj) + sin t sin(t− tj)| = ψ(|x|)| cos tj |.

Hence, we obtain from (7)

∫

R2

ϕ1 dµa,tj = | cos tj |
∫

R2

ψ(|x|) dµa,tj = | cos tj |
∫ ∞

0

2

√

1 +
1

a2
ψ(t) dt

= 2

√

1 +
1

a2
| cos tj |.
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Therefore | cos tj | converges. If | cos tj | → 1, then from (15) we see that µa,tj →
µa,0 = µa vaguely. Similarly, if | cos tj | → 0, then µa,tj → µa,π

2
vaguely.

Finally, if | cos tj | → c ∈ (0, 1), then there is t0 ∈ (0, π2 ) such that | cos tj | →
| cos t0| = | cos(π − t0)|. Let us set ϕ2(0, 0) = 0 and

ϕ2(x) = ψ(|x|)
∣

∣

∣

x1

|x| cos
( ln |x|

a
+ t0

)

+
x2

|x| sin
( ln |x|

a
+ t0

)∣

∣

∣
for |x| > 0,

where the function ψ is the same as above. This time we obtain for x ∈ sptµa,tj

ϕ2(x) = ψ(|x|)| cos t cos(t− tj + t0) + sin t sin(t− tj + t0)| = ψ(|x|)| cos(tj − t0)|.

The vague convergence implies the same way as above that | cos(tj−t0)| converges.
If | cos(tj − t0)| → 1, then (15) implies µa,tj → µa,t0 vaguely. Otherwise, since
| cos(tj − t0)| → d 6= 1 and | cos tj | → | cos(π − t0)|, we have cos tj → cos(π − t0).
Thus using (15) we obtain µa,tj → µa,π−t0 vaguely. Hence we have the remaining
inclusion

Tan1
(0,0)(µa + H1

x (L1 ∪ L2)) ⊂ {µa,t0 + H1
x (L1 ∪ L2) : 0 ≤ t0 < π}.

�

4. Large radii: monotonicity by compensation

Because of the self-similarity of the logarithmic spirals it is enough to prove
monotonicity at (z, r) only for z ∈ S(1)∪{(0, 0)} and r > 0. In case of large radii,
we carefully estimate each term on the right hand side of (10) for ν = µa.

Throughout the rest of the paper we will often use the notation defined in
Preliminaries, in particular the one used in (4)–(6) without further notice.

Proposition 4.1. There is K1 > 0 such that if a > K1, z ∈ S(1) and r ≥ 9
10 ,

then µa + H1
x (L1 ∪ L2) is monotone at (z, r).

Proof of Proposition 4.1: case r ∈ [ 9
10 , 8]. If r ∈ [ 9

10 , 8] and z ∈ S(1), then
the proof of the monotonicity at (z, r) is obtained directly from formula (10).
The main ingredient of the proof is the estimate concerning µaB(z, r) given in
Lemmata 4.2, 4.3 and 4.4, respectively.

Lemma 4.2. Assume a ≥ 9, z ∈ S(1) and r ∈ [1 + 1
a
, 8]. Then

µaB(z, r) ≤ 2
(

1 + 4
ln2 a

a2

)

r.

Proof: As r ∈ [1 + 1
a
, 8] and |z| = 1, we have S(z, r) ∩ [Γ+

a ] 6= ∅ 6= S(z, r) ∩ [Γ−
a ]

and |ξ|, |η| ∈ [ 1
a
, 9]. Hence τ, σ ∈ [− ln a

a
, ln 9
a

], and thus a ≥ 9 implies | sin τcos τ | ≤ 2 lna
a

,

| sinσcosσ | ≤ 2 lna
a

, ξ1 > 0 and η1 < 0. Therefore

|ξ1| + |η1| = ξ1 − η1 = |ξ1 − η1| ≤ |ξ1 − z1| + |z1 − η1| ≤ 2r
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and thus (7) implies

µaB(z, r) = µ+
a B(z, r) + µ−

a B(z, r)

≤
√

1 +
1

a2
(|ξ| + |η|) =

√

1 +
1

a2

(

√

1 +
(ξ2
ξ1

)2

|ξ1| +
√

1 +
(η2
η1

)2

|η1|
)

=

√

1 +
1

a2

(

√

1 +
( sin τ

cos τ

)2

|ξ1| +
√

1 +
( sinσ

cosσ

)2

|η1|
)

≤ 2

√

1 +
1

a2

√

1 + 4
ln2 a

a2
r < 2

(

1 + 4
ln2 a

a2

)

r.

�

Lemma 4.3. Assume a ≥ 9, z ∈ S(1) and r ∈ [1 − 3
a
, 1 + 1

a
]. Then

µaB(z, r) ≤ 2
(

1 + 4
ln2 a

a2

)(

1 +
1

a

)

≤ 2r
(

1 + 4
ln2 a

a2

)(

1 +
6

a

)

.

Proof: Since B(z, r) ⊂ B(z, 1+ 1
a
), the first inequality follows from Lemma 4.2.

The second estimate follows from the assumptions concerning r and a. �

Lemma 4.4. Assume a ≥ 9, z ∈ S(1) and r ∈ [ 9
10 , 1 − 3

a
]. Then

µaB(z, r) ≤ 2

√

1 +
1

a2
r +

1

a

√

1 +
1

a2
.

Proof: By the symmetry between Γ+
a and Γ−

a we can suppose z1 ≥ 0. Since
every x ∈ B(z, r) satisfies

1 − r = |z| − r ≤ |x| ≤ |z| + r = 1 + r,

we obtain from (7)

(16) µ+
a B(z, r) ≤

√

1 +
1

a2

(

(1 + r) − (1 − r)
)

= 2

√

1 +
1

a2
r.

Next, let us estimate µ−
a B(z, r). Plainly B(z, r) ⊂ B(2). Further, if t ∈ [

ln 1
a

a
, ln 2
a

]

and θ = Γ−
a (t), then we have |θ| ∈ [ 1

a
, 2], θ1 < 0, |θ2| ≤ |eatt| ≤ 2

a
(because the

function g(s) = eass satisfies g′(s) = eas(1 + as), g(
ln 1

a

a
) = − lna

a2 > − 2
a
, g(− 1

a
) =

− 1
ea

and g( ln 2
a

) = 2 ln 2
a

, which implies |g(s)| ≤ 2
a

on [
ln 1

a

a
, ln 2
a

]). Therefore

|z − θ|2 = (z1 − θ1)
2 + (z2 − θ2)

2 ≥ z2
1 + z2

2 − 2|z2||θ2| ≥ 1 − 4

a
>

(

1 − 3

a

)2

≥ r2.
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It follows that θ /∈ B(z, r). Hence we have B(z, r) ∩ [Γ−
a ] ⊂ B( 1

a
) and thus from

(7) we obtain

(17) µ−
a B(z, r) ≤ µ−

a B( 1
a
) =

1

a

√

1 +
1

a2
.

As µa = µ+
a + µ−

a , the proof follows from (16) and (17). �

Proof of Proposition 4.1: case 9
10 ≤ r ≤ 8: Let us suppose that µaB(z, r)

> 0, otherwise the proof is trivial. Since there are at least two points in the
intersection S(z, r) ∩ sptµa, we have

(18) Dr µaB(z, r) ≥ 2.

If r ∈ [ 9
10 , 1 − 3

a
], using (10), (18), Lemma 4.4 and Lemma 2.3 we obtain

Dr

(µa + H1
x (L1 ∪ L2))B(z, r)

r
≥ 2

r
− 2r + 1

a

r2

√

1 +
1

a2
+

1

200r3
.

If r ∈ [1 − 3
a
, 1 + 1

a
], then (10), (18), Lemma 4.3 and Lemma 2.3 give

Dr

(µa + H1
x (L1 ∪ L2))B(z, r)

r
≥ 2

r
− 2

r

(

1 + 4
ln2 a

a2

)(

1 +
6

a

)

+
1

200r3
.

Finally, if r ∈ [1 + 1
a
, 8], then (10), (18), Lemma 4.2 and Lemma 2.3 imply

Dr

(µa + H1
x (L1 ∪ L2))B(z, r)

r
≥ 2

r
− 2

r

(

1 + 4
ln2 a

a2

)

+
1

200r3
.

Now, if a is sufficiently large, then the right hand side is positive in all three
cases. �

Proof of Proposition 4.1: case r ≥ 8. For large radii, our estimates have to be
much more careful then in the previous case. Let us briefly outline our strategy.
Since there are always at least two points of the intersection B(z, r)∩sptµa (recall
r ≥ 8), from (7) and (10) we obtain

Dr

µaB(z, r)

r
≥

√

1 + 1
a2

r2

((∂|ξ|
∂r

+
∂|η|
∂r

)

r − |ξ| − |η|
)

.

Next, we estimate all the terms on the right hand side using the identities from

Lemma 4.6. Notice, that when estimating ∂|ξ|
∂r

(and similarly ∂|η|
∂r

), we do not use
the explicit formula (21) (which is not convenient to work with), but we proceed
in the following way. First, we obtain a rough estimate (see Lemma 4.7). Then we
use formula (20) together with this rough estimate on the right hand side (where
∂|ξ|
∂r

is multiplied by 1
a
, which can be made very small).
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Lemma 4.5. Assume τ, σ ∈ R, z ∈ S(1) and r ≥ 8. Then

√

cos2 ϕ+ r2 − 1 ≥
(

1 − 1

100

)

r,
√

cos2 ψ + r2 − 1 ≥
(

1 − 1

100

)

r.

Proof: Since r ≥ 8, we have
√
r2 − 1 ≥ 99

100r. Now, both estimates follow
easily. �

Lemma 4.6. Assume a ≥ 30 and z ∈ S(1). The function r 7→ |ξ| is continuously

differentiable on (8,∞) and satisfies

(19) |ξ| = cosϕ+
√

cos2 ϕ+ r2 − 1,

(20)
∂|ξ|
∂r

=
− 1
a

sinϕ∂|ξ|
∂r

+ r
√

cos2 ϕ+ r2 − 1

and

(21)
∂|ξ|
∂r

=
r

√

cos2 ϕ+ r2 − 1 + sinϕ
a

.

The function r 7→ |η| is continuously differentiable on (8,∞) and satisfies

(22) |η| = − cosψ +
√

cos2 ψ + r2 − 1,

(23)
∂|η|
∂r

=
1
a

sinψ ∂|η|
∂r

+ r
√

cos2 ψ + r2 − 1

and

(24)
∂|η|
∂r

=
r

√

cos2 ψ + r2 − 1 − sinψ
a

.

Proof: Using ξ = Γ+
a (τ) = (|ξ| cos τ, |ξ| sin τ) we set

F (r, τ) = |ξ − z|2 − r2 = (|ξ| cos τ − z1)
2 + (|ξ| sin τ − z2)

2 − r2

= |ξ|2 − 2|ξ|(z1 cos τ + z2 sin τ) + 1 − r2

= |ξ|2 − 2|ξ| cosϕ+ 1 − r2.

Solving the equation F (r, τ) = 0 with respect to nonnegative |ξ| we obtain (19).
The smoothness, (20) and (21) follow from the Implicit Function Theorem.

Indeed, ∂ϕ
∂τ

= ∂(τ−ϑ)
∂τ

= 1 and ∂|ξ|
∂τ

= ∂ exp(aτ)
∂τ

= a exp(aτ) = a|ξ| imply

∂F

∂τ
= 2a|ξ|2 − 2a|ξ| cosϕ+ 2|ξ| sinϕ = 2a|ξ|

(

|ξ| − cosϕ+
sinϕ

a

)

.
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Hence applying (19) and Lemma 4.5 we obtain

∂F

∂τ
= 2a|ξ|

(

√

cos2 ϕ+ r2 − 1 +
sinϕ

a

)

> 0.

Further ∂F
∂r

= −2r, ∂|ξ|
∂τ

= a|ξ|, above formula for ∂F
∂τ

imply

∂|ξ|
∂r

=
∂|ξ|
∂τ

∂τ

∂r
=
∂|ξ|
∂τ

· (−1)
∂F
∂r
∂F
∂τ

= a|ξ| 2r

2a|ξ|(
√

cos2 ϕ+ r2 − 1 + sinϕ
a

)
.

This is (21). As α = β
γ+δ is equivalent to α = β−δα

γ
provided γ + δ 6= 0 6= γ, (20)

follows from (21). For the point of intersection η, the proof is similar. �

Lemma 4.7. Assume a ≥ 30, z ∈ S(1) and r ≥ 8. Then

∂|ξ|
∂r

≤ 2 and
∂|η|
∂r

≤ 2.

Proof: The estimate concerning ∂|ξ|
∂r

follows from (21) and Lemma 4.5. For ∂|η|
∂r

we use (24) and Lemma 4.5. �

Lemma 4.8. Assume a ≥ 30, z ∈ S(1) and r ≥ 8. Then

(∂|ξ|
∂r

+
∂|η|
∂r

)

r − |ξ| − |η| ≥ − 3

a(r − 1)
.

Proof: Since r > 1 and z ∈ S(1), we have |ξ|, |η| ∈ [r− 1, r+1]. Set δ = |τ −σ|.
We observe

(25) 0 ≤ δ =
∣

∣

∣

1

a
ln |ξ| − 1

a
ln |η|

∣

∣

∣
≤ 1

a
ln

(r + 1

r − 1

)

=
1

a
ln

(

1 +
2

r − 1

)

≤ 2

a(r − 1)
.

Using (19), (20), (22) and (23) we obtain
(26)

(∂|ξ|
∂r

+
∂|η|
∂r

)

r − |ξ| − |η|

=
( − 1

a
sinϕ∂|ξ|

∂r
+ r

√

cos2 ϕ+ r2 − 1
+

1
a

sinψ ∂|η|
∂r

+ r
√

cos2 ψ + r2 − 1

)

r − cosϕ−
√

cos2 ϕ+ r2 − 1

+ cosψ −
√

cos2 ψ + r2 − 1.

Further, we have

(27) | cosϕ− cosψ| ≤ |ϕ− ψ| = |τ − σ| = δ,

(28) | sinϕ− sinψ| ≤ |ϕ− ψ| = |τ − σ| = δ,
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(29)

r2
√

cos2 ϕ+ r2 − 1
+

r2
√

cos2 ψ + r2 − 1

−
√

cos2 ϕ+ r2 − 1 −
√

cos2 ψ + r2 − 1

=
1 − cos2 ϕ

√

cos2 ϕ+ r2 − 1
+

1 − cos2 ψ
√

cos2 ψ + r2 − 1
≥ 0

and by Lemma 4.5 and (27)
(30)

∣

∣

∣

1
√

cos2 ϕ+ r2 − 1
− 1

√

cos2 ψ + r2 − 1

∣

∣

∣

=
|(cos2 ψ + r2 − 1) − (cos2 ϕ+ r2 − 1)|

√

cos2 ϕ+ r2 − 1
√

cos2 ψ + r2 − 1(
√

cos2 ϕ+ r2 − 1 +
√

cos2 ψ + r2 − 1)

≤ | cos2 ψ − cos2 ϕ|
2( 99

100r)
3

≤ 2| cosψ − cosϕ|
r3

≤ 2δ

r3
.

Lemma 4.5, Lemma 4.7, (20), (23), (25), (28) and (30) imply

(31)

∣

∣

∣

∂|ξ|
∂r

− ∂|η|
∂r

∣

∣

∣
=

∣

∣

∣

( r
√

cos2 ϕ+ r2 − 1
− r

√

cos2 ψ + r2 − 1

)

+
1

a

(( − sinϕ∂|ξ|
∂r

√

cos2 ϕ+ r2 − 1
+

sinϕ∂|ξ|
∂r

√

cos2 ψ + r2 − 1

)

+
(− sinϕ+ sinψ)∂|ξ|

∂r
√

cos2 ψ + r2 − 1
+

sinψ(−∂|ξ|
∂r

− ∂|η|
∂r

)
√

cos2 ψ + r2 − 1

)
∣

∣

∣

≤ 2δ

r2
+

1

a

(

2
2δ

r3
+

2δ
99
100r

+
4

99
100r

)

≤ 5

ar
.

Finally, from Lemma 4.5, Lemma 4.7, (25), (28), (30) and (31) we obtain
(32)

∣

∣

∣

( − 1
a

sinϕ∂|ξ|
∂r

√

cos2 ϕ+ r2 − 1
+

1
a

sinψ ∂|η|
∂r

√

cos2 ψ + r2 − 1

)

r
∣

∣

∣

=
r

a

∣

∣

∣

− sinϕ∂|ξ|
∂r

√

cos2 ϕ+ r2 − 1
+

sinϕ∂|ξ|
∂r

√

cos2 ψ + r2 − 1

− (sinϕ− sinψ)∂|ξ|
∂r

√

cos2 ψ + r2 − 1
−

sinψ
(

∂|ξ|
∂r

− ∂|η|
∂r

)

√

cos2 ψ + r2 − 1

∣

∣

∣

≤ r

a

(

2
2δ

r3
+

2δ
99
100r

+
1

99
100r

5

ar

)

≤ 1

ar
.

Now, the proof follows from (26) combined with estimates (27) (see also (25)),
(29) and (32). �
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Proof of Proposition 4.1: case r ≥ 8. Let us suppose that µaB(z, r) > 0,
otherwise the proof is trivial. Hence there are at least two points in the intersection
S(z, r)∩sptµa. Using in addition (7), (10), Lemma 2.3 and Lemma 4.8 we obtain

Dr

(µa + H1
x (L1 ∪ L2))B(z, r)

r

≥

√

1 + 1
a2

r2

((∂|ξ|
∂r

+
∂|η|
∂r

)

r − |ξ| − |η|
)

+ Dr

(H1
x (L1 ∪ L2))B(z, r)

r

≥ −

√

1 + 1
a2

r2
3

a(r − 1)
+

1

200r3
.

If a is sufficiently large, then the right hand side is positive and we are done. �

5. Small radii

For very small radii we cannot rely on any compensation, because some balls
centered on S(1) with small radii do not intersect L1 ∪ L2.

Proposition 5.1. There is K2 > 0 such that if a > K2, 0 < r ≤ 9
10 and z ∈ S(1),

then µa is monotone at (z, r).

For the proof of this proposition we need some auxiliary lemmata.

If the center z ∈ S(1) is relatively far from [Γ+
a ] or [Γ−

a ], then the proof is easy.

Lemma 5.2. There is K3 > 0 such that if a > K3, 0 < r ≤ 9
10 , z ∈ S(1) and

|z − (1, 0)| ≥ 1
20 , then µ+

a is monotone at (z, r).

Proof: Let us use the logarithmic parameterization

Γ̃+
a (t) =

(

t cos
( ln t

a

)

, t sin
( ln t

a

))

, t ∈ (0,∞).

We observe that there is K3 > 0 such that for every a > K3 and t ∈ [ 1
20 , 2] we

have

(33) (Γ̃+
a )1(t) > 0, |(Γ̃+

a )2(t)| ≤
1

80
and

√

1 +
1

a2
≤

√

1 +
1

802
.

Now, we distinguish two cases. First, let z1 ≤ 0. For t ∈ (0, 1
20 ] we have

|z − Γ̃+
a (t)| ≥ |z| − |Γ̃+

a (t)| ≥ 1 − 1

20
>

9

10
≥ r.

For t ∈ [ 1
20 , 2], we see that (33) and z1 ≤ 0 ≤ (Γ̃+

a )1(t) imply
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|z − Γ̃+
a (t)| =

√

(z1 − (Γ̃+
a )1(t))2 + (z2 − (Γ̃+

a )2(t))2 ≥
√

z2
1 + z2

2 − 2|z2||(Γ̃+
a )2(t)|

≥
√

1 − 2
1

80
>

9

10
≥ r.

Finally, for t > 2 we have

|z − Γ̃+
a (t)| ≥ |Γ̃+

a (t)| − |z| ≥ 2 − 1 >
9

10
≥ r.

Hence if z1 ≤ 0, we always have µ+
a B(z, r) = 0 and thus µ+

a is monotone at (z, r).
In the second case we have z1 > 0. We can further suppose that µ+

a B(z, r) > 0,
otherwise the proof is trivial. In this case one can easily check that |z2| > 1

40 , the

points ξ, ξ̃ ∈ S(z, r)∩ [Γ+
a ] are well defined, |ξ|, |ξ̃| ∈ [ 1

20 , 2] and Dr µ
+
a B(z, r) ≥ 2.

Hence using (33) we arrive to the estimate

r =

√

( |ξ − ξ̃|
2

)2

+
∣

∣

∣
z − ξ + ξ̃

2

∣

∣

∣

2

≥ |ξ − ξ̃|
2

√

√

√

√1 +
4|z2 − ξ2+ξ̃2

2 |2
(|ξ| + |ξ̃|)2

≥ |ξ − ξ̃|
2

√

1 +
4( 1

40 − 1
80 )2

4
≥ |ξ − ξ̃|

2

√

1 +
1

a2
≥ |ξ| − |ξ̃|

2

√

1 +
1

a2
.

Therefore we obtain from (7) and (10)

Dr

µ+
a B(z, r)

r
=

Dr µ
+
a B(z, r)r − µ+

a B(z, r)

r2
≥ 1

r2

(

2r −
√

1 +
1

a2
(|ξ| − |ξ̃|)

)

≥ 0.

�

Our next goal is to obtain the local monotonicity for the measure µ+
a (see

Lemma 5.4). We start with the following auxiliary result.

Lemma 5.3. There is K4 > 0 such that for a > K4 the function

Φa(t) = exp(at)
(

(a2 − 1) cos t+ 2a sin t− (1 + a2)
)

+ (1 + a2)(1 + cos t) − 2a2

satisfies Φa(t) ≥ 0 on [0, 1
a
] and Φa(t) ≤ 0 on [− 12

5a , 0].

Proof: We have

Φ′
a(t) = exp(at)

(

a(1 + a2) cos t+ (1 + a2) sin t− a(1 + a2)
)

− (1 + a2) sin t,

Φ′′
a(t) = exp(at)

(

(1 + a2)2 cos t− a2(1 + a2)
)

− (1 + a2) cos t.
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As Φa(0) = Φ′
a(0) = 0 it is enough to find K4 > 0 such that the function

Ψa(t) = exp(at)
(

(1 + a2) cos t− a2
)

− cos t =
1

1 + a2
Φ′′
a(t)

satisfies the following inequalities for a > K4

(34) Ψa(t) ≤ 0 on
[

−12

5a
, 0

]

and Ψa(t) ≥ 0 on
[

0,
1

a

]

.

First, there is M1 > 0 such that cos t ≥ 0 for a > M1 and t ∈ [− 12
5a , 0], and thus

Ψa(t) ≤ exp(at)
(

(1 + a2) cos t− a2 − cos t
)

= a2 exp(at)(cos t− 1) ≤ 0.

This is the first inequality in (34). Let us prove the second one. There is M2 > M1

such that for a > M2 and t ∈ [0, 1
a
] we have

exp(at) ≥ 1 + at+
a2t2

2
,(35)

cos t ≥ 1 − t2

2
(36)

and

(37)
(1 + a2) cos t− a2 ≥ (1 + a2)

(

1 − t2

2

)

− a2 ≥ (1 + a2)
(

1 − 1

2a2

)

− a2

=
1

2
− 1

2a2
≥ 0.

Using (35) and (37) we obtain

Ψa(t) ≥
(

(1 + a2) cos t− a2
)(

1 + at+
a2t2

2

)

− cos t

= a2(cos t− 1) +
(

(1 + a2) cos t− a2
)(

at+
a2t2

2

)

.

Hence estimate (36) implies

Ψa(t) ≥ −a
2t2

2
+

(

1− (1 + a2)t2

2

)(

at+
a2t2

2

)

= at
(

1− (1 + a2)t2

2
− a(1 + a2)t3

4

)

.

Finally, there is K4 > M2 such that for a > K4 and t ∈ [0, 1
a
] we have

1 − (1 + a2)t2

2
− a(1 + a2)t3

4
≥ 1 − (1 + a2)

2a2
− (1 + a2)

4a2
=

1

4
− 3

4a2
≥ 0

and thus Ψa(t) ≥ 0 on [0, 1
a
] for a > K4. We have (34) and we are done. �
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Lemma 5.4. There is K5 > 0 such that if a > K5, 0 < r ≤ 9
10 , z ∈ S(1) and

|z − (1, 0)| ≤ 1
20 , then µ+

a is monotone at (z, r).

Proof: Suppose µ+
a B(r, z) > 0, otherwise the proof is trivial. We find θ ∈ [Γ+

a ]
such that |z − θ| = dist(z, [Γ+

a ]). As (1, 0) ∈ [Γ+
a ] and |z − (1, 0)| ≤ 1

20 , we obtain

||θ| − |z|| ≤ |θ − z| ≤ |(1, 0) − z| ≤ 1

20
,

hence |θ| ∈ [ 1920 ,
21
20 ]. Assumption r ≤ 9

10 implies |ξ̃|, |ξ| ∈ [ 1
10 ,

19
10 ] ⊂ [ |θ|11 , 2|θ|]. Now

we would like to parameterize a suitable part of [Γ+
a ] as a graph of a function so

that we could use Lemma 2.1.
Because of the self-similarity of the logarithmic spirals, our case is equivalent

to the case with the nearest point θ0 = Γ+
a (t0), where t0 = − arctan( 1

a
), the

points of intersection ξ̃0, ξ0 satisfying |ξ̃0|, |ξ0| ∈ [ |θ0|11 , 2|θ0|] and the center z0 on
a line passing through Γ+

a (t0) and perpendicular to [Γ+
a ] at Γ+

a (t0). Let r0 denote
the radius in this case. On some neighborhood of Γ+

a (t0), the curve Γ+
a can be

suitably represented by a graph of a function as shown in the sequel. Let us define

x(t) = ea(t+t0) cos(t+ t0) − eat0 cos(t0), t ∈ (−π
2 ,

π
2 ),

y(t) = ea(t+t0) sin(t+ t0) − eat0 sin(t0), t ∈ (−π
2 ,

π
2 ).

The choice t0 = − arctan( 1
a
) implies cos t0 = −a sin t0,

(38) sin t0 = − sin(−t0) = −
√

tan2(−t0)
1 + tan2(−t0)

= −
√

1
a2

1 + 1
a2

= − 1√
1 + a2

,

(39) cos(t+t0) = cos t0 cos t−sin t0 sin t = − sin t0(a cos t+sin t) =
a cos t+ sin t√

1 + a2

and

(40) sin(t+t0) = sin t0 cos t+cos t0 sin t = − sin t0(a sin t−cos t) =
a sin t− cos t√

1 + a2
.

Hence

x′(t) =
d

dt

( eat0√
1 + a2

(eat(a cos t+ sin t))
)

=
ea(t+t0)

√
1 + a2

(1 + a2) cos t

and

y′(t) =
d

dt

( eat0√
1 + a2

(eat(a sin t− cos t))
)

=
ea(t+t0)√
1 + a2

(1 + a2) sin t.

Therefore we see that we can consider x 7→ y as a function f : (x(−π
2 ), x(π2 )) 7→ R

with f ′(x) = tan t, where t is such that x = x(t).
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Next, let us show that the function f satisfies the assumptions of Lemma 2.1,
the version from Remark 2.2. There is K̃ > 0 large enough such that for a > K̃
we have (−π

2 ,
π
2 ) ⊃ [− 12

5a ,
1
a
] and |f ′| ≤ 1

4 on [x(− 12
5a ), x( 1

a
)]. Next, using x(0) = 0

and f ′(0) = f ′(x(0)) = tan 0 = 0, one can easily check that the first coordinate
of the center z0 is the same as the first coordinate of the point [x(0), f(x(0))].

It remains to check condition (11). For t ∈ [− 12
5a ,

1
a
] let us define

Ψa(t) = 2|x(t)|
√

1 + f ′2(x(t))

− (1 +
√

1 + f ′2(x(t)))µf ({(u, v) : u ∈ I(0, x(t)), v ∈ R})

= sgn t
(

2(ea(t+t0) cos(t+ t0) − eat0 cos t0)
√

1 + tan2 t

− (1 +
√

1 + tan2 t)

√

1 +
1

a2
(ea(t+t0) − eat0)

)

,

where we have used (7). From (38), (39), (40),
√

1 + tan2 t = 1
| cos t| = 1

cos t on

(−π
2 ,

π
2 ), cos t0 = −a sin t0 = a√

1+a2
and a

√

1 + 1
a2

√
1 + a2 = 1 + a2 we obtain

Ψa(t) = eat0 sgn t
(

2
(

eat
1√

1 + a2
(a cos t+ sin t) − a√

1 + a2

) 1

cos t

−
(

1 +
1

cos t

)

√

1 +
1

a2
(eat − 1)

)

=
eat0 sgn t

a
√

1 + a2 cos t

(

2aeat(a cos t+ sin t) − 2a2 − (1 + cos t)(1 + a2)(eat − 1)
)

=
eat0 sgn t

a
√

1 + a2 cos t

(

eat(2a2 cos t+ 2a sin t− (cos t+ 1)(1 + a2))

− 2a2 + (cos t+ 1)(1 + a2)
)

=
eat0 sgn t

a
√

1 + a2 cos t
Φa(t).

Hence Lemma 5.3 implies Ψa(t) ≥ 0 on [− 12
5a ,

1
a
] provided a > K5 = max(K4, K̃).

This proves inequality (11) on [x(− 12
5a ), x( 1

a
)]. Further, we can see that the curve

(x(t), y(t)) + Γ+
a (t0), t ∈ [− 12

5a ,
1
a
], parameterizes the set

M = {Γ+
a (t) : t ∈ [t0 − 12

5a , t0 + 1
a
]} = [Γ+

a ] ∩
{

x ∈ R
2 : |x| ∈

[

e−
12
5 |θ0|, e1|θ0|

]}

.

Hence, as exp(− 12
5 ) < 1

11 ≤ |ξ̃0|
|θ0| and exp 1 > 2 ≥ |ξ0|

|θ0| , we have ξ0, ξ̃0 ∈ M .

Therefore Lemma 2.1 and Remark 2.2 imply that µa is monotone at (z0, r0). Thus,
the self-similarity of logarithmic spirals gives that µa is monotone at (z, r). �
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Proof of Proposition 5.1: Let us recall that µa = µ+
a +µ−

a . The monotonic-
ity at (z, r) for µ+

a follows from Lemma 5.2 and Lemma 5.4. Next, the symmetry
between Γ+

a and Γ−
a gives the same for µ−

a . Finally, the super-additivity of the
lower derivative Dr concludes the proof. �

Proof of Theorem 1.3: Fix K > max(K1,K2) large enough so that

(41)

√

1 +
1

K2
< 1 + ε.

For z ∈ S(1) and r ≥ 9
10 , the monotonicity at (z, r) of µa +H1

x (L1 ∪L2) follows

from Proposition 4.1. If z ∈ S(1) and r ≤ 9
10 , then we use Proposition 5.1. In any

other case, with z 6= (0, 0), the monotonicity at (z, r) follows from above by the
self-similarity of the logarithmic spirals. Finally, if z = (0, 0) and r > 0, then the
monotonicity at (z, r) is easily obtained from (8) and Lemma 2.3. The non-unique
tangential behavior follows from Proposition 3.1. The density properties easily
follow from the definitions of Γ+

a , Γ−
a , L1 and L2, from (8) and from (41). �

6. Necessity of compensation

In this section, we show that the measure µa is not monotone by itself for any
a > 0. Further, since for any line L, the measure H1

x L does not provide any
compensation for balls centered on L (see (14) with d = 0), only one line cannot
be a sufficient compensation for the monotonicity.

Proposition 6.1. Assume a > 0 and z ∈ R
2 \ {0}. Then there exists r > 0 such

that ̺ 7→ µaB(z,̺)
̺

is decreasing on some neighborhood of r.

Let us start with some preliminary work. In this section, ξj , ηj , etc. no longer
denote the j-th coordinate of a point but the j-th member of a sequence.

Lemma 6.2. Let a > 0 and z ∈ S(1). Then there is r0 > 1 with the following

property:

If r ≥ r0, then S(z, r) ∩ sptµa = {ξ, η}, where ξ ∈ S(z, r) ∩ [Γ+
a ] and η ∈

S(z, r) ∩ [Γ−
a ], the functions r 7→ |ξ| and r 7→ |η| are increasing and continuously

differentiable on (r0,∞) and satisfy (19), (21), (22) and (24).

Proof: The proof is similar to the proof of Lemma 4.6. �

Lemma 6.3. Assume a > 0, z ∈ S(1). Then there is a sequence of radii {rj}∞j=1

such that rj ≥ r0 (r0 > 1 is given by Lemma 6.2), rj → ∞ and the points of

intersection ξj = Γ+
a (τj) ∈ S(z, rj) ∩ [Γ+

a ] and ηj = Γ−
a (σj) ∈ S(z, rj) ∩ [Γ−

a ]
satisfy cosψj = 1 and 0 < ϕj − ψj ≤ 2

a(rj−1) for all j ∈ N.

Proof: Applying Lemma 6.2 to r = r0 we obtain a unique t0 ∈ R such that
Γ−
a (t0) ∈ S(z, r)∩ [Γ−

a ]. Given j ∈ N, find tj ∈ [|t0|+ 2
a

+2π(j−1), |t0|+ 2
a

+2πj)
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such that cos(tj − ϑ) = 1 and set rj = |Γ−
a (tj) − z|. Thus Γ−

a (tj) = −(rj − 1)z
and

rj = |Γ−
a (tj) − z| ≥ |Γ−

a (tj)| − |z| = eatj − 1

≥ ea|t0|+2 − 1 ≥ ea|t0| + 1 ≥ |Γ−
a (t0)| + |z| ≥ r0.

Lemma 6.2 gives that ξj and ηj are well defined, σj = tj , ηj = −(rj − 1)z and

|ξj | ≥ |ξj − z| − |z| = rj − 1 = |ηj |.

Hence τj ≥ σj . On the other hand |ξj | ≤ |ξj − z| + |z| = rj + 1. Therefore

0 ≤ ϕj − ψj = τj − σj =
1

a
ln |ξj | −

1

a
ln |ηj | ≤

1

a
ln

(rj + 1

rj − 1

)

=
1

a
ln

(

1 +
2

rj − 1

)

≤ 2

a(rj − 1)
.

Finally, if ϕj = ψj , we have τj = σj . Thus ξj = −ηj = (rj − 1)z. Therefore

rj = |ξj − z| = |(rj − 1)z − z| = |(rj − 2)z| = |rj − 2|.

Hence from rj ≥ r0 > 1 we obtain a contradiction. This implies ϕj > ψj and we
are done. �

Proof of Proposition 6.1: From the self-similarity of the logarithmic spirals
we see that it is enough to consider z = (cosϑ, sinϑ), ϑ ∈ [0, 2π), only. From
Lemma 6.2 and (7) for any r > r0 we have

(42)

∂

∂r

µaB(z, r)

r
=

1

r2

(

r
∂

∂r
µaB(z, r) − µaB(z, r)

)

=
1

r2

√

1 +
1

a2

(∂|ξ|
∂r

r − |ξ| + ∂|η|
∂r

r − |η|
)

.

From (19), (21), (22), (24), (42) and cosψj = 1 we obtain

∂

∂r

µaB(z, r)

r
|r=rj

=
1

r2j

√

1 + 1
a2

√

cos2 ϕj + r2j − 1 +
sinϕj

a

Φ(rj),
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where

Φ(rj) =
(√

cos2 ϕj + r2j − 1 +
sinϕj
a

)( r2j
√

cos2 ϕj + r2j − 1 +
sinϕj

a

−
(

cosϕj +
√

cos2 ϕj + r2j − 1
)

− rj + (−1 + rj)
)

= r2j +
(

1 − cosϕj −
√

cos2 ϕj + r2j − 1
)(√

cos2 ϕj + r2j − 1 +
sinϕj
a

)

= r2j + (1 − cosϕj)
√

cos2 ϕj + r2j − 1 + (1 − cosϕj)
sinϕj
a

− cos2 ϕj − r2j

+ 1 −
√

cos2 ϕj + r2j − 1
sinϕj
a

.

Hence it is enough to show that Φ(rj) < 0 for j large enough. As rj − 1 ≤
√

cos2 ϕj + r2j − 1 ≤ rj , 1− cos2 ϕj = (1+cosϕj)(1− cosϕj) ≤ 2(1− cosϕj) and

sinϕj ≥ 0 for j large, we obtain

Φ(rj) ≤ (1 − cosϕj)rj +
sinϕj
a

+ 2(1 − cosϕj) − (rj − 1)
sinϕj
a

= (1 − cosϕj)(rj + 2) − (rj − 2)
sinϕj
a

.

Recall that we have cosψj = 1 by Lemma 6.3. Hence ψj is a multiple of 2π.

Moreover, as 1 − cos t = 2 sin2( t2 ), we have

1 − cosϕj = 1 − cos(ϕj − ψj) = 2 sin2
(ϕj − ψj

2

)

.

Thus from ϕj−ψj ∈ (0, 2
a(rj−1) ] (which comes from Lemma 6.3) and t

2 ≤ sin t ≤ t

on [0, π2 ] we obtain for rj sufficiently large

Φ(rj) ≤ 2(rj + 2) sin2
(ϕj − ψj

2

)

− (rj − 2)
sin(ϕj − ψj)

a

≤ 4rj

(ϕj − ψj
2

)2

− rj
2

ϕj − ψj
2a

= rj(ϕj − ψj)
(

ϕj − ψj −
1

4a

)

≤ rj(ϕj − ψj)
( 2

a(rj − 1)
− 1

4a

)

< 0.

Thus ∂
∂r

µaB(z,r)
r

is negative on some neighborhood of rj for j large enough. �
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