Previous |  Up |  Next

Article

Keywords:
boundary value problem; half-linear differential equation; Sturm comparison theorem; half-linear Prüfer transformation
Summary:
We consider the boundary value problem involving the one dimensional $p$-Laplacian, and establish the precise intervals of the parameter for the existence and non-existence of solutions with prescribed numbers of zeros. Our argument is based on the shooting method together with the qualitative theory for half-linear differential equations.
References:
[1] Agarwal, R. P., Lü, H., O'Regan, D.: Eigenvalues and the one-dimensional $p$-Laplacian. J. Math. Anal. Appl. 266 (2002), 383-400. DOI 10.1006/jmaa.2001.7742 | MR 1880513 | Zbl 1002.34019
[2] Pino, M. del, Elgueta, M., Manasevich, R.: A homotopic deformation along $p$ of a Leray-Schauder degree result and existence for $(|u'| \sp {p-2}u')'+f(t,u)=0$, $u(0)=u(T)=0$, $p>1$. J. Differential Equations 80 (1989), 1-13. DOI 10.1016/0022-0396(89)90093-4 | MR 1003248
[3] Došlý, O.: Half-linear differential equations. Handbook of Differential Equations, Volume 1: Ordinary Differential Equations. Vol. 1, 161-358, North-Holland, Amsterdam, Elsevier (2004). MR 2166491 | Zbl 1090.34027
[4] Došlý, O., Řehák, P.: Half-Linear Differential Equations. North-Holland, Amsterdam, Elsevier (2005). MR 2158903 | Zbl 1090.34001
[5] Elbert, Á.: A half-linear second order differential equation. Qualitative theory of differential equations. Colloq. Math. Soc. János Bolyai. 30 (1981), 153-180. MR 0680591
[6] Hai, D. D., Schmitt, K., Shivaji, R.: Positive solutions of quasilinear boundary value problems. J. Math. Anal. Appl. 217 (1998), 672-686. DOI 10.1006/jmaa.1997.5762 | MR 1492111 | Zbl 0893.34017
[7] He, X., Ge, W.: Twin positive solutions for the one-dimensional $p$-Laplacian boundary value problems. Nonlinear Anal. 56 (2004), 975-984. DOI 10.1016/j.na.2003.07.022 | MR 2038732 | Zbl 1061.34013
[8] Kusano, T., Naito, M.: Sturm-Liouville eigenvalue problems for half-linear ordinary differential equations. Rocky Mountain J. Math. 31 (2001), 1039-1054. DOI 10.1216/rmjm/1020171678 | MR 1877333 | Zbl 1006.34025
[9] Kong, L., Wang, J.: Multiple positive solutions for the one-dimensional $p$-Laplacian. Nonlinear Anal. 42 (2000), 1327-1333. DOI 10.1016/S0362-546X(99)00143-1 | MR 1784078 | Zbl 0961.34012
[10] Li, H. J., Yeh, C. C.: Sturmian comparison theorem for half-linear second-order differential equations. Proc. Roy. Soc. Edinburgh Sect. A 125 (1995), 1193-1204. MR 1362999 | Zbl 0873.34020
[11] Manasevich, R., Zanolin, F.: Time-mappings and multiplicity of solutions for the one-dimensional $p$-Laplacian. Nonlinear Anal. 21 (1993), 269-291. MR 1237587 | Zbl 0792.34021
[12] Naito, Y., Tanaka, S.: Sharp conditions for the existence of sign-changing solutions to equations involving the one-dimensional $p$-Laplacian. Nonlinear Anal., Theory Methods Appl. 69 (2008), 3070-3083. DOI 10.1016/j.na.2007.09.002 | MR 2452116 | Zbl 1157.34010
[13] Sánchez, J.: Multiple positive solutions of singular eigenvalue type problems involving the one-dimensional $p$-Laplacian. J. Math. Anal. Appl. 292 (2004), 401-414. DOI 10.1016/j.jmaa.2003.12.005 | MR 2047620 | Zbl 1057.34012
[14] Wang, J.: The existence of positive solutions for the one-dimensional $p$-Laplacian. Proc. Amer. Math. Soc. 125 (1997), 2275-2283. DOI 10.1090/S0002-9939-97-04148-8 | MR 1423340 | Zbl 0884.34032
Partner of
EuDML logo