[1] Ball, J.:
A version of the fundamental theorem of Young measures. PDEs and continuum models of phase transitions. Lectures Notes in Physics 344. Springer, Berlin (1989).
DOI 10.1007/BFb0024945 |
MR 1036070
[2] Braides, A.:
$\Gamma$-convergence for Beginners. Oxford University Press, Oxford (2002).
MR 1968440 |
Zbl 1198.49001
[3] Braides, A., Defranceschi, A.:
Homogenization of Multiple Integrals. Oxford University Press (1998).
MR 1684713 |
Zbl 0911.49010
[4] Cioranescu, D., Donato, P.:
An Introduction to Homogenization. Oxford University Press, Oxford (1999).
MR 1765047 |
Zbl 0939.35001
[5] Maso, G. Dal:
An Introduction to $\Gamma$-Convergence. Birkhäuser, Basel (1993).
MR 1201152
[6] Giorgi, E. De, Franzoni, T.:
Su un tipo di convergenza variazionale. Atti Accad. Naz. Lincei VIII. Ser, Rend. Cl. Sci. Mat. 58 (1975), Italien 842-850.
MR 0448194 |
Zbl 0339.49005
[7] Girault, V., Raviart, P.-A.:
Finite Element Methods for Navier-Stokes Equations. Springer, Berlin (1986).
MR 0851383 |
Zbl 0585.65077
[8] Jikov, V. V., Kozlov, S. M., Oleinik, O. A.:
Homogenization of Differential Operators and Integral Functionals. Springer, Berlin (1994).
MR 1329546
[9] Pedregal, P.:
Parametrized Measures and Variational Principles. Birkäuser, Basel (1997).
MR 1452107 |
Zbl 0879.49017
[11] Pedregal, P., Serrano, H.:
$\Gamma$-convergence of quadratic functionals with oscillatory linear perturbations. Nonlinear Anal., Theory Methods Appl. 70 (2009), 4178-4189.
DOI 10.1016/j.na.2008.09.007 |
MR 2514750
[13] Young, L. C.: Lectures on the Calculus of Variations and Optimal Control Theory. Launders Company, Philadelphia (1980).