Previous |  Up |  Next

Article

Keywords:
Peano existence theorem; non-Lipschitz nonlinearity; non-uniqueness; IVP; ODE; Cauchy problem
Summary:
An ODE with non-Lipschitz right hand side has been considered. A family of solutions with $L^p$-dependence of the initial data has been obtained. A special set of initial data has been constructed. In this set the family is continuous. The measure of this set has been estimated.
References:
[1] Bownds, M.: A uniqueness theorem for non-Lipschitzian systems of ordinary differential equations. Funkcial. Ekvac. 13 (1970), 61–65. MR 0293150
[2] Brauer, F., Sternberg, S.: Local uniqueness, existence in the large, and the convergence of successive approximations. Amer. J. Math. 80 (1958), 421–430. DOI 10.2307/2372792 | MR 0095303 | Zbl 0082.06801
[3] Coddington, E. A., Levinson, N.: Theory of Ordinary Differential Equations. McGraw–Hill Book Company, 1955. MR 0069338 | Zbl 0064.33002
[4] Engelking, R.: General Topology. PWN–Polish Scientific Publishers, Warsaw, 1977. MR 0500780 | Zbl 0373.54002
[5] Folland, G. B.: Real analysis. Modern techniques and their applications. Second edition. Wiley-Interscience Publication, John Wiley and Sons, 1999. MR 1681462
[6] Godunov, A. N.: Peano’s theorem in Banach spaces. Funct. Anal. Appl. 9 (1975), 53–55. DOI 10.1007/BF01078180 | Zbl 0314.34059
[7] Hartman, P.: Ordinary Differential Equations. New York-London-Sydney, John Wiley and Sons, 1964. MR 0171038 | Zbl 0125.32102
[8] Kamke, E.: Differentialgleichungen reeler Functionen. Akademische Verlagsgesellschaft, Geest and Portig K.–G., 1930.
[9] Kato, S.: On existence and uniqueness conditions for nonlinear ordinary differential equations in Banach spaces. Funkcial. Ekvac. 19 (3) (1976), 239–245. MR 0435538 | Zbl 0358.34064
[10] Krasnoselskii, M. A., Krein, S. G.: On a class of uniqueness theorems for the equations $y^{\prime }=f(x,y)$. Uspekhi Mat. Nauk (N.S.) 11 no. 1 (67) (1956), 209–213. MR 0079152
[11] Levy, P.: Provessus stochastiques et mouvement Brownien. Gauthier–Villars, Paris, 1948. MR 0190953
[12] Ramankutty, P.: Kamke’s uniqueness theorem. J. London Math. Soc. (2) 22 (1982), 110–116. MR 0579814
[13] Schwartz, L.: Analyse mathèmatique. Herman, 1967. Zbl 0171.01301
[14] Sobolevskii, S. L.: Systems of differential equations with nonunique solutions of the Cauchy problem. Differential Equations 38 (3) (2002), 451–452. DOI 10.1023/A:1016038732103 | MR 2005086
[15] Szep, A.: Existence theorem for weak solutions for ordinary differential equations in reflexive Banach spaces. Studia Sci. Math. Hungar. 6 (1971), 197–203. MR 0330688
[16] Yorke, J. A.: A continuous differential equation in Hilbert space without existence. Funkcial. Ekvac. 13 (1970), 19–21. MR 0264196 | Zbl 0248.34061
Partner of
EuDML logo