[1] Bownds, M.:
A uniqueness theorem for non-Lipschitzian systems of ordinary differential equations. Funkcial. Ekvac. 13 (1970), 61–65.
MR 0293150
[3] Coddington, E. A., Levinson, N.:
Theory of Ordinary Differential Equations. McGraw–Hill Book Company, 1955.
MR 0069338 |
Zbl 0064.33002
[5] Folland, G. B.:
Real analysis. Modern techniques and their applications. Second edition. Wiley-Interscience Publication, John Wiley and Sons, 1999.
MR 1681462
[7] Hartman, P.:
Ordinary Differential Equations. New York-London-Sydney, John Wiley and Sons, 1964.
MR 0171038 |
Zbl 0125.32102
[8] Kamke, E.: Differentialgleichungen reeler Functionen. Akademische Verlagsgesellschaft, Geest and Portig K.–G., 1930.
[9] Kato, S.:
On existence and uniqueness conditions for nonlinear ordinary differential equations in Banach spaces. Funkcial. Ekvac. 19 (3) (1976), 239–245.
MR 0435538 |
Zbl 0358.34064
[10] Krasnoselskii, M. A., Krein, S. G.:
On a class of uniqueness theorems for the equations $y^{\prime }=f(x,y)$. Uspekhi Mat. Nauk (N.S.) 11 no. 1 (67) (1956), 209–213.
MR 0079152
[11] Levy, P.:
Provessus stochastiques et mouvement Brownien. Gauthier–Villars, Paris, 1948.
MR 0190953
[12] Ramankutty, P.:
Kamke’s uniqueness theorem. J. London Math. Soc. (2) 22 (1982), 110–116.
MR 0579814
[14] Sobolevskii, S. L.:
Systems of differential equations with nonunique solutions of the Cauchy problem. Differential Equations 38 (3) (2002), 451–452.
DOI 10.1023/A:1016038732103 |
MR 2005086
[15] Szep, A.:
Existence theorem for weak solutions for ordinary differential equations in reflexive Banach spaces. Studia Sci. Math. Hungar. 6 (1971), 197–203.
MR 0330688
[16] Yorke, J. A.:
A continuous differential equation in Hilbert space without existence. Funkcial. Ekvac. 13 (1970), 19–21.
MR 0264196 |
Zbl 0248.34061