Article
Keywords:
spacelike submanifolds; the first eigenvalue
Summary:
In this paper, we prove that the first eigenvalue of a complete spacelike submanifold in $R^{n+p}_p$ with the bounded Gauss map must be zero.
References:
[1] Cheng, S. Y., Yau, S. T.:
Differential equations on Riemannian manifolds and geometric applications. Comm. Pure Appl. Math. 28 (1975), 333–354.
DOI 10.1002/cpa.3160280303 |
MR 0385749
[2] Kobayashi, S., Nomizu, K.:
Foundations of differential geometry. John Wiley & Sons, Inc., 1969.
Zbl 0175.48504
[5] Wu, B. Y.:
On the first eigenvalue of spacelike hypersurfaces in Lorentzian space. Arch. Math. (Brno) 42 (2006), 233–238.
MR 2260381 |
Zbl 1164.53373