Previous |  Up |  Next

Article

Keywords:
entire functions; difference equations; finite order
Summary:
In this paper we obtain that there are no transcendental entire solutions with finite order of some nonlinear difference equations of different forms.
References:
[1] Bergweiler, W., Langley, J. K.: Zeros of difference of meromorphic functions. Math. Proc. Camb. Philos. Soc. 142 (2007), 133-147. DOI 10.1017/S0305004106009777 | MR 2296397
[2] Chiang, Y.-M., Feng, S.-J.: On the Nevanlinna characteristic of $f(z+\eta)$ and difference equations in the complex plane. Ramanujan. J. 16 (2008), 105-129. DOI 10.1007/s11139-007-9101-1 | MR 2407244 | Zbl 1152.30024
[3] Chen, Z. X., Shon, K. H.: Estimates for the zeros of differences of meromorphic functions. Sci. China, Ser. A 52 (2009), 2447-2458. DOI 10.1007/s11425-009-0159-7 | MR 2566657 | Zbl 1181.30016
[4] Clunie, J.: On integral and meromorphic functions. J. Lond. Math. Soc. 37 (1962), 17-27. DOI 10.1112/jlms/s1-37.1.17 | MR 0143906 | Zbl 0104.29504
[5] Gross, F.: On the equation $f^{n}+g^{n}=1$. Bull. Am. Math. Soc. 72 (1966), 86-88. DOI 10.1090/S0002-9904-1966-11429-5 | MR 0185125
[6] Halburd, R. G., Korhonen, R. J.: Difference analogue of the lemma on the logarithmic derivative with applications to difference equations. J. Math. Anal. Appl. 314 (2006), 477-487. DOI 10.1016/j.jmaa.2005.04.010 | MR 2185244 | Zbl 1085.30026
[7] Halburd, R. G., Korhonen, R. J.: Nevanlinna theory for the difference operator. Ann. Acad. Sci. Fenn., Math. 31 (2006), 463-478. MR 2248826 | Zbl 1108.30022
[8] Halburd, R. G., Korhonen, R. J., Tohge, K.: Holomorphic cures with shift-invariant hyperplane preimages.
[9] Laine, I.: Nevanlinna Theory and Complex Differential Equations. Walter de Gruyter Berlin (1992). MR 1207139 | Zbl 0784.30002
[10] Laine, I., Yang, C. C.: Clunie theorems for difference and $q$-difference polynomials. J. Lond. Math. Soc. 76 (2007), 556-566. DOI 10.1112/jlms/jdm073 | MR 2377111 | Zbl 1132.30013
[11] Liu, K., Laine, I.: A note on value distribution of difference polynomials. Bull. Aust. Math. Soc. 81 (2010), 353-360. DOI 10.1017/S000497270900118X | MR 2639851 | Zbl 1201.30035
[12] Liu, K.: Zeros of difference polynomials of meromorphic functions. Result. Math. 57 (2010), 365-376. DOI 10.1007/s00025-010-0034-4 | MR 2651120 | Zbl 1201.30036
[13] Liu, K.: Meromorphic functions sharing a set with applications to difference equations. J. Math. Anal. Appl. 359 (2009), 384-393. DOI 10.1016/j.jmaa.2009.05.061 | MR 2542182 | Zbl 1177.30035
[14] Mohon'ko, A. Z.: The Nevanlinna characteristics of certain meromorphic functions. Teor. Funktsii Funktsional. Anal. i Prilozhen. 14 (1971), 83-87 Russian. MR 0298006
[15] Whittaker, J. M.: Interpolatory Function Theory. Cambridge Tracts in Math. a. Math. Phys. 33. Cambridge University Press London (1935).
[16] Yang, C.-C., Laine, I.: On analogies between nonlinear difference and differential equations. Proc. Japan Acad., Ser. A. 86 (2010), 10-14. MR 2598818 | Zbl 1207.34118
[17] Yang, C.-C., Yi, H.-X.: Uniqueness Theory of Meromorphic Functions. Mathematics and its Applications 557. Kluwer Academic Publishers/Science Press Dordrecht/Beijing (2003). MR 2105668
Partner of
EuDML logo