Previous |  Up |  Next

Article

Keywords:
locally convex vector space; vector valued measure; Pettis integrable function; moments of such measures and functions
Summary:
Conditions, under which the elements of a locally convex vector space are the moments of a regular vector-valued measure and of a Pettis integrable function, both with values in a locally convex vector space, are investigated.
References:
[1] Berg, Ch., Christensen, J. P. P., Ressel, P.: Harmonic Analysis on Semigroups. Springer-Verlag, Berlin, Germany (1954). MR 0747302
[2] Bartle, R. G., Dunford, N., Schwartz, J. C.: Weak compactness and vector measures. Canad. J. Math. 7 (1955), 289-305. DOI 10.4153/CJM-1955-032-1 | MR 0070050 | Zbl 0068.09301
[3] Debieve, C.: Integration par rapport a une mesure vectorielle. Ann. de la Societé Scientif. de Bruxelles. 11 (1973), 165-185. MR 0318440 | Zbl 0268.28004
[4] Duchoň, M., Debieve, C.: Moments of vector-valued functions and measures. Tatra Mt. Math. Publ. 42 (2009), 199-210. MR 2543917
[5] Dunford, N., Schwartz, J. T.: Linear Operators. Part I, Interscience, New York, USA (1966). Zbl 0146.12601
[6] Hausdorff, F.: Summationsmethoden und Momentenfolgen II. Math. Z. 9 (1921), 280-299. DOI 10.1007/BF01279032 | MR 1544467
[7] Hausdorff, F.: Momentprobleme fuer ein endliches Interval. Math. Z. 16 (1923), 220-248. DOI 10.1007/BF01175684 | MR 1544592
[8] Lewis, D. R.: Integration with respect to vector measures. Pac. J. Math. 33 (1970), 157-165. DOI 10.2140/pjm.1970.33.157 | MR 0259064 | Zbl 0195.14303
[9] Lorentz, G. G.: Bernstein Polynomials. Toronto University Press, Toronto, Canada (1953). MR 0057370 | Zbl 0051.05001
[10] Tweddle, I.: Weak compactness in locally convex spaces. Glasgow Math. J. 9 (1968), 123-127. DOI 10.1017/S0017089500000409 | MR 0239395 | Zbl 0159.41802
[11] Widder, D. V.: The Laplace Transform. Princeton University Press, Princeton, N.J. (1941). MR 0005923 | Zbl 0063.08245
Partner of
EuDML logo