[2] Chen, C. S., Nakao, M., Ohara, Y.:
Global existence and gradient estimates for quasilinear parabalic equations of the $m$-Laplacian type with a strong perturbation. Differ. Integral Equ. 14 (2001), 59-74.
MR 1797932
[6] Dibendetto, E.:
Degenerate Parabolic Equations. Springer-Verlag, Berlin (1993).
MR 1230384
[8] Ladyzhenskaya, O. A., Solonnikov, V. A., Uraltseva, N. N.: Linear and Quasilinear Equations of Parabolic Type. American Mathematical Society, Providence, RI (1969).
[10] Lions, J. L.:
Quelques méthodes de résolution des problémes aux limites non linéaires. Dunod, Paris (1969).
MR 0259693 |
Zbl 0189.40603
[11] Nakao, M., Chen, C. S.:
Global existence and gradient estimates for quasilinear parabolic equations of m-Laplacian type with a nonlinear convection term. J. Diff. Equ. 162 (2000), 224-250.
DOI 10.1006/jdeq.1999.3694 |
MR 1741878
[12] Ohara, Y.:
$L^\infty$ estimates of solutions of some nonlinear degenerate parabolic equations. Nonlinear Anal. TMA 18 (1992), 413-426.
MR 1152718
[13] Ohara, Y.:
Gradient estimates for some quasilinear parabolic equations with nonmonotonic perturbations. Adv. math. Sci. Appl. 6 (1996), 531-540.
MR 1411980 |
Zbl 0865.35018
[15] Temam, R.:
Infinite-Dimensional Dynamical in Mechanics and Physics. Springer-Verlag, New York (1997).
MR 1441312
[16] Veron, L.: Coércivité et proprietes regularisantes des semigroups nonlineaires dans les espaces de Banach. Faculté des Sciences et Techniques, Université François Rabelais-tours, France (1976).