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Abstract. In this paper, we consider the global existence, uniqueness and L∞ es-
timates of weak solutions to quasilinear parabolic equation of m-Laplacian type ut −
div(|∇u|m−2∇u) = u|u|β−1

∫
Ω
|u|α dx in Ω × (0,∞) with zero Dirichlet boundary condi-

tion in ∂Ω. Further, we obtain the L∞ estimate of the solution u(t) and ∇u(t) for t > 0
with the initial data u0 ∈ Lq(Ω) (q > 1), and the case α+ β < m − 1.
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1. Introduction

In this paper we study the global existence, uniqueness, and L∞ estimates of the

solution for the initial boundary value problem for the parabolic equation of m-

Laplacian type with a nonlocal term

(1.1)











ut − div(|∇u|m−2∇u) = u|u|β−1
∫

Ω |u|α dx, x ∈ Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω,

u(x, t) = 0, x ∈ ∂Ω, t > 0,

where 2 < m < N , α > 0, β > 1 and Ω is a bounded domain in R
N (N > 3) with

the smooth boundary ∂Ω. If α + β > m − 1 and |Ω| or u0(x) is properly large,

we know the problem (1.1) need not have a global solution, see [9]. So we mainly

consider the problem (1.1) with α + β < m − 1. Many results concerning global

The work was supported by the Fundamental Research Funds for the Central Univer-
sities (Grant No. 2010B17914) and the Science Funds of Hohai University (Grant No.
2008430211 and 2008408306).
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existence, uniqueness, blow-up and asymptotic behavior of the solution for (1.1)

have been established. In particular, it is well known that (1.1) admits a unique

global solution if α = 0 and u0 ∈ W 1,m
0 (Ω).

Many physical phenomena were formulated as non-local mathematical models and

studied by many authors (cf. [1],[5], [9]). Li and Xie in [9] considered the problem

(1.2)











ut − div(|∇u|m−2∇u) =
∫

Ω |u|α dx, x ∈ Ω, t > 0,

u(x, 0) = u0(x) > 0, x ∈ Ω,

u(x, t) = 0, x ∈ ∂Ω, t > 0,

by making use of super-subsolution techniques with 2 < m < N, α > 1, u0 ∈

L∞(Ω) ∩ W 1,m
0 (Ω) and ∂u0/∂ν < 0 on ∂Ω, where ν denotes the unit outer normal

vector on the boundary ∂Ω. Under the appropriate hypotheses, they developed local

theory of the solution and obtained that the solution either exists globally or blows

up in finite time.

Rouchon in [14] proved the existence of a universal bound for all nonnegative

global solutions of (1.2) with m = 2, where α > 1 and u0 ∈ L∞(Ω).

In [3] Chen considered the nonlocal problem (1.1) with α = 0 and u0 ∈ Lq (1 <

q < 2), proved the global existence of u(t) and gave an L∞ estimates of u(t) and

∇u(t) for t ∈ (0, T ]. However, as far as we know, there are few results concerning

the L∞ estimates of u(t) and ∇u(t) for u0 ∈ Lq(Ω) (q > 1) for the problem (1.1).

In this paper we are interested in the global existence and the uniqueness of solu-

tion for (1.1) with u0 ∈ Lq(Ω) (q > 1), α + β < m − 1, and give L∞ estimates for

u(t) and ∇u(t) with t > 0. For L∞ estimates, we use Moser’s technique as in [2]–[4],

[11]–[13]. To obtain an estimate of ‖∇u(t)‖∞, we also make the assumption that the

mean curvature H(x) of ∂Ω at x is non-positive with respect to the outward normal;

such assumption is made also in [2], [7]. We know that H(x) 6 0 if Ω is convex.

This paper is organized as follows. In Section 2, we state the main results and

present some lemmas which will be used below. In Sections 3 and 4, we use these

lemmas to derive L∞ estimates for u(t) and ∇u(t), respectively. The proof of the

main results will be given in Sections 3 and 4.

2. Preliminaries and results

Let ‖·‖p and ‖·‖1,p denote the Lp(Ω) andW 1,p(Ω) (1 6 p 6 ∞) norms respectively.

Definition 1. A measurable function u(x, t) on Ω × R
+ is said to be a weak

solution of the problem (1.1) if u = u(x, t) ∈ L∞((0,∞), W 1,m
0 )∩Lm−1(R+, W 1,m−1

0 )

390



and the equality

(2.1)

∫ t

0

∫

Ω

{−uϕs + |∇u|m−2∇u∇ϕ − ‖u(s)‖α
α|u|

β−1uϕ} dxds

=

∫

Ω

{u0(x)ϕ(x, 0) − u(x, t)ϕ(x, t)} dx

is valid for any t > 0 and ϕ = ϕ(x, t) ∈ C1(R+, C1
0 (Ω)), where R+ = [0, +∞).

We make the following assumptions.

(H1) u0 ∈ Lq(Ω), q > 1;

(H2) N > m > 2, α > 0, β > 1, and α + β < m − 1;

(H3) the mean curvature H(x) of ∂Ω at x is non-positive with respect to the outward

normal.

Remark 1. Since Ω is a bounded domain, we have Lp(Ω) ⊂ Lq(Ω) for p > q > 1.

Our main results read as follows.

Theorem 1. Assume (H1)–(H2) hold. Then (1.1) admits a unique global solution

u(t) which satisfies

u(t) ∈ L∞(R+, Lq) ∩ L∞

loc((0,∞), W 1,m
0 ) ∩ Lm−1

loc (R+, W 1,m−1
0 ),(2.2)

ut ∈ L2
loc((0,∞), L2),

and the estimates

‖u(t)‖p 6 Cp(1 + t−1/(m−2)), t > 0, ∀p > q,(2.3)

‖u(t)‖∞ 6 C0t
−λ, 0 < t 6 T,(2.4)

‖∇u(t)‖m 6 C0t
−(1+2λ(α+β))/m, 0 < t 6 T,(2.5)

where λ = N/((m − 2)N + mq), C0 = C0(|Ω|, T, ‖u0‖q) > 0 and Cp depends on p.

Theorem 2. Assume that (H1)–(H3) hold. Then the solution u(t) of (1.1) has

the gradient estimate

(2.6) ‖∇u(t)‖∞ 6 C0t
−µ, 0 < t 6 T.

Further, if u0 ∈ W 1,m
0 (Ω) and 2β < m∗ = Nm/(N − m), we have

(2.7) ‖∇u(t)‖m 6 ‖∇u0‖me−λ1t + C0, t > 0

with some λ1 > 0 and µ = (2(1 + 2λ(α + β)) + N2)/(2m + (m − 2)N2).

To obtain the above results, we will use the following lemmas.
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Lemma 1 ([11], [16]). Let β > 0, N > m > 1, β + 1 6 q and 1 6 r 6 p 6

(β + 1)Nm/(N − m). Then for |u|βu ∈ W 1,m(Ω) we have

‖u‖q 6 C
1/(β+1)
1 ‖u‖1−θ

r ‖|u|βu‖
θ/(β+1)
1,m

with θ = (β + 1)(r−1 − p−1)/(N−1 − m−1 + (β + 1)r−1), where C1 is a constant

independent of p, r, β and θ.

Lemma 2 ([13]). Let y(t) be a nonnegative differentiable function on (0, T ] sat-

isfying

y′(t) + Atλθ−1y1+θ
6 Bt−ky(t) + Ct−δ

with A, θ > 0, λθ > 1, B, C > 0, k 6 1. Then we have

y(t) 6 A−1/θ(2λ + 2BT 1−k)1/θt−λ + 2C(λ + BT 1−k)−1t1−δ, 0 < t 6 T.

Lemma 3 ([15]). Let y(t) be a nonnegative differentiable function on (0,∞)

satisfying

y′(t) + Ay1+µ(t) 6 B, t > 0,

with A, µ > 0, B > 0. Then

y(t) 6 (BA−1)1/(1+µ) + (Aµt)−1/µ, t > 0.

Further, if y(t) is continuous on [0, +∞) then

y(t) 6 (BA−1)1/(1+µ) + (y(0)−µ + Aµt)−1/µ, t > 0.

3. L∞
estimate for u(t)

Let u0,i ∈ C2
0 (Ω) → u0 in Lq(Ω) (q > 1) as i → ∞. For i = 1, 2, . . ., we consider

the approximate problem of (1.1):

(3.1)











ut − div((|∇u|2 + i−1)(m−2)/2∇u) = u|u|β−1
∫

Ω
|u|α dx, x ∈ Ω, t > 0,

u(x, 0) = u0,i(x), x ∈ Ω,

u(x, t) = 0, x ∈ ∂Ω, t > 0.

Then the problem (3.1) has a unique smooth solution ui(x, t) (see [8]). For simplicity

of notation, we write u instead of ui and up for |u|p−1u when p > 0. Also, let C, Cj ,

µj be generic constants independent of i and p, and changeable from line to line.

392



Proposition 1. Assume (H1)–(H2) hold and u(t) = u(x, t) is the solution of (3.1).

Then u(t) ∈ L∞(R+, Lq).

The proof of Proposition 1 is similar to that of Propsition 1 in [3] and is omitted

here.

Proposition 2. Under the assumptions of Proposition 1 and p > q > 1, the

solution u(t) of (3.1) also satisfies

(3.2) ‖u(t)‖p 6 Cp(1 + t−1/(m−2)), t > 0, ∀p > q,

and for any T > 0,

‖u(t)‖∞ 6 C1t
−λ, 0 < t 6 T,(3.3)

‖∇u(t)‖m 6 C1t
−(1+2λ(α+β))/m, 0 < t 6 T,(3.4)

∫ T

0

s1+γ‖us(s)‖
2
2 ds 6 C1,(3.5)

where Cp depends on p, λ = N/((m − 2)N + mq), C1 = C1(|Ω|, T, ‖u0‖q), γ >

λ(2 − q)+, and (2 − q)+ = max{0, 2 − q}.

P r o o f. Multiplying (3.1) by up−1 (p > q > 1), we have

(3.6)
1

p

d

dt
‖u(t)‖p

p + µ0p
1−m‖∇u(p+m−2)/m(t)‖m

m 6 ‖u(t)‖α
α

∫

Ω

|u(t)|β+p−1 dx ≡ A.

By the Sobolev inequality, we get

‖∇u(p+m−2)/m‖m
m > µ1‖u‖

p+m−2
p+m−2

where µ0, µ1 > 0 are independent of p.

Since α + β < m − 1, we use Young’s inequality and get

(3.7) ‖u(t)‖α
α

∫

Ω

|u(t)|β+p−1 dx = ‖u(t)‖α
α‖u(t)‖p+β−1

p+β−1 6
µ0µ1

2
‖u(t)‖p+m−2

p+m−2 + Cp.

Then (3.6) becomes

(3.8)
d

dt
‖u(t)‖p

p +
µ0µ1

2
p2−m‖u(t)‖p+m−2

p+m−2 6 pCp.

Note that

(3.9) ‖u(t)‖p+m−2
p+m−2 > C0‖u(t)‖p+m−2

p
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with C0 = C0(|Ω|) > 0. Then, the application of Lemma 3 to (3.8) gives

(3.10) ‖u(t)‖p 6 Cp(1 + t−1/(m−2)), t > 0.

In order to derive (3.3), we must treat carefully the differential inequality (3.6).

Since 0 6 α < m, it follows from the Sobolev’s inequality that

‖u(t)‖α 6 C0‖u
(p+m−2)/m(t)‖m/(p+m−2)

m 6 C0‖∇u(p+m−2)/m(t)‖m/(p+m−2)
m

Further, by Lemma 1 and Proposition 1, we get

A = ‖u(t)‖α
α‖u(t)‖p+β−1

p+β−1 6 ‖u(t)‖α
α‖u(t)‖θ1

p ‖u(t)‖θ2

q ‖u(t)‖θ3

p∗

6 C0‖∇u(p+m−2)/m(t)‖mα/(p+m−2)
m ‖u(t)‖θ1

p ‖u(t)‖θ3

p∗

6 C0‖u‖
θ1

p ‖∇u(p+m−2)/m(t)‖m(α+θ3)/(p+m−2)
m

6
1

2
µ0p

1−m‖∇u(p+m−2)/m(t)‖m
m + Cpσ‖u(t)‖p

p ,

in which σ = λα, p∗ = N(p+m− 2)/(N −m) and (θ1, θ2, θ3) is the positive solution

of the following system























θ1 + θ2 + θ3 = p + β − 1,

θ1

p
+

θ2

q
+

θ3(N − m)

N(p + m − 2)
= 1,

θ1

p
+

θ3 + α

p + m − 2
= 1.

It is easy to obtain

θ1 =
p(p + m − 2 − α)[N(m − 2) + mq] − pN(p + m − 2)(β − 1) − pNα(p − q)

(p + m − 2)[N(m − 2) + mq]
,

θ2 = qα(p + m − 2)−1 + mq[β − 1 + α(p − q)(p + m − 2)−1][N(m − 2) + mq]−1,

θ3 = [N(p + m − 2)(β − 1) + Nα(p − q)][N(m − 2) + mq]−1.

Then (3.6) becomes

(3.11)
d

dt
‖u(t)‖p

p +
1

2
C0p

2−m‖∇u(p+m−2)/m(t)‖m
m 6 C2p

1+σ‖u(t)‖p
p .

Let r > mq−1, p1 = q, pn = rpn−1 −m + 2, θn = rN(1− p−1
n pn−1)(m + Nr −N)−1,

βn = (pn + m − 2)θ−1
n − pn, n = 2, 3, . . .. By Lemma 1 we know that

‖u(t)‖pn
6 Cm/(pn+m−2)‖u(t)‖1−θn

pn−1
‖∇u(pn+m−2)/m(t)‖mθn/(pn+m−2)

m .
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Putting this into (3.11) (p = pn) we find that for 0 < t 6 T ,

(3.12)
d

dt
‖u(t)‖pn

+ C0C
−m/θnp2−m

n ‖u(t)‖m−2−βn

pn−1
‖u(t)‖1+βn

pn

6 C2p
1+σ
n ‖u(t)‖pn

.

We claim that there exist a bounded sequence {ξn} and a convergent sequence

{λn} such that

(3.13) ‖u(t)‖pn
6 ξnt−λn , 0 < t 6 T.

In fact, by Proposition 1, this holds for n = 1 if we take λ1 = 0, ξ1 = sup
t>0

{‖u(t)‖q}.

If (3.13) is true for n − 1, then we have from (3.12) that

d

dt
‖u(t)‖pn

+ C0C
−m/θnp2−m

n ξm−2−βn

n−1 tλn−1(βn−m+2)‖u(t)‖1+βn

pn

(3.14)

6 C2p
1+σ
n ‖u(t)‖pn

.

Applying Lemma 2 to (3.14), we conclude that (3.13) also holds for n with

λn = (1 + λn−1(βn − m + 2))β−1
n and ξn = (C−1

0 Cm/θnp2−m
n ξm−2

n−1 )−1/βn(2λn +

2C2p
1+σ
n )1/βnξn−1, n = 2, 3, . . .

It is not difficult to show that λn → λ = N/((m− 2)N + mq) as n → ∞ and {ξn}

is bounded (cf. [11]). Then (3.3) follows from (3.13) as n → ∞.

In order to obtain (3.4), we first choose γ > λ(2− q)+. Without loss of generality,

we suppose q ∈ (1, 2). Further, let η(t) ∈ C[0,∞) ∩ C1(0,∞) such that η(t) = tγ if

t ∈ [0, 1]; η(t) = 2 if t > 2 and η(t), η′(t) > 0 in [0,∞).

Then, multiplying (3.1) by η(t)u we arrive at

(3.15)

∫ t

0

∫

Ω

η(s)|∇u(s)|m dxds +
1

2
η(t)‖u(t)‖2

2

6
1

2

∫ t

0

η′(s)‖u(s)‖2
2 ds +

∫ t

0

∫

Ω

η(s)|u(s)|β+1‖u(s)‖α
α dxds.

Noticing that for t ∈ (0, T ],

(3.16)

∫ t

0

η′(s)‖u(s)‖2
2 ds 6 C0

∫ t

0

sγ−1‖u(s)‖q
q‖u(s)‖2−q

∞
ds 6 Ctγ−λ(2−q)

and

(3.17) ‖u(s)‖α
α

∫

Ω

|u(s)|β+1 dx 6 C‖u(s)‖α+β+1
m 6

1

2
‖∇u(s)‖m

m + C,

where the fact α + β < m − 1 has been used.
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Therefore, we obtain from (3.15)–(3.17) that

(3.18)

∫ t

0

∫

Ω

η(s)|∇u(s)|m dxds 6 Ctγ−λ(2−q), 0 < t 6 T.

Next, let ̺(t) =
∫ t

0 η(s) ds, t > 0. Similarly, multiplying (3.1) by ̺(t)ut, we get

(3.19)
1

m

d

dt

∫

Ω

̺(t)(|∇u(t)|2 + i−1)m/2 dx + ̺(t)‖ut(t)‖
2
2

6
̺′(t)

m

∫

Ω

(|∇u(t)|2 + i−1)m/2 dx + ̺(t)‖u(t)‖α
α

∫

Ω

|u(t)|β |ut(t)| dx.

Moreover, for t ∈ (0, T ] we have

̺(t)‖u(t)‖α
α

∫

Ω

|u(t)|β |ut(t)| dx 6 ̺(t)‖ut(t)‖2‖u(t)‖β
2β‖u(t)‖α

α(3.20)

6
1

2
̺(t)‖ut(t)‖

2
2 + C̺(t)‖u(t)‖2β

2β‖u(t)‖2α
α

6
1

2
̺(t)‖ut(t)‖

2
2 + Ctγ+1−2(α+β)λ.

Now, the application of (3.18)–(3.20) and the integration of (3.19) on [0, t] yield

(3.21)
1

m
̺(t)‖∇u(t)‖m

m +
1

2

∫ t

0

̺(s)‖us(s)‖
2
2 ds 6 C(tγ−λ(2−q) + tγ+2−2(α+β)λ).

Thus (3.21) gives

(3.22)
̺(t)

m
‖∇u(t)‖m

m 6 Ctγ−2λ(α+β), 0 < t 6 T.

This implies (3.4). Similarly, we have the estimate (3.5) from (3.21) and (3.22).

Then the proof of Proposition 2 is completed. �

P r o o f of Theorem 1. Noticing that the estimate constants C1, Cp in (3.2)–(3.5)

are independent of i, we can obtain the desired solution u(t) as the limit of {ui}(or

a subsequence) by the standard compactness argument in [10,11]. The solution u(t)

of (1.1) also satisfies (3.2)–(3.5) and (2.3)–(2.5).

It remains to prove the uniqueness. First, for n = 1, 2, . . . we define a+
n (s) = 1 if

ns > 1, and a+
n (s) = n2s2e1−n2s2

if 0 6 ns < 1. Let An(t) =
∫ t

0
an(s) ds, t ∈ R

1,

where an(s) is an odd extension of a+
n (s) in R

1.

Let u1(t), u2(t) be two solutions of (1.1) which satisfy (2.2) and (2.4). Denote

u(t) = u1(t)− u2(t). Then by Proposition 1 and Lemma 4.4 in [6, chap 1] we obtain

(3.23)
d

dt

∫

Ω

An(u(t)) dx + γ0

∫

Ω

|∇u|ma′

n(u) dx 6 I
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for some γ0 > 0, where

I =

∫

Ω

(‖u1‖
α
α|u1|

β−1u1 − ‖u2‖
α
α|u2|

β−1u2)an(u) dx(3.24)

6 ‖u1‖
α
α

∫

Ω

∣

∣|u1|
β−1u1 − |u2|

β−1u2

∣

∣dx +
∣

∣‖u1‖
α
α − ‖u2‖

α
α

∣

∣

∫

Ω

|u2|
β−1u2 dx

6 Ct−λ(α+β−1)‖u(t)‖1.

Then combining (3.23) with (3.24), we obtain for t ∈ (0, T ]

(3.25)
d

dt

∫

Ω

An(u(t)) dx 6 Ct−λ(α+β−1)‖u(t)‖1,

where C > 0 is independent of i and n. Integrating (3.25) on [r, t] and letting n → ∞,

we have

(3.26) ‖u(t)‖1 6 ‖u(r)‖1 +

∫ t

r

s−λ(α+β−1)‖u(s)‖1 ds, 0 < r < t 6 T.

Since u(t) ∈ Lq([0, T ], Lq(Ω)) (q > 1) and u(0) = 0, we let r → 0+ and find that

‖u(t)‖1 6

∫ t

0

s−λ(α+β−1)‖u(s)‖1 ds, 0 < t 6 T.

Since 0 < λ(α+β−1) < 1, the application of the Gronwall’s Lemma brings ‖u(t)‖1 =

0 on [0, T ]. Thus u1(t) = u2(t) on [0, T ]. This completes the proof of Theorem 1. �

4. L∞
estimate for ∇u(t)

In this section we give the proof of Theorem 2. We also use an argument similar

to that in [2], [7], [13], but we must treat carefully the nonlinear nonlocal term in the

L∞ estimate of ∇u(t). As above, we only consider the estimate of ‖∇u(t)‖∞ for the

smooth solution u(t) of (3.1). As above, let C,Cj be generic constants independent

of p and i changeable from line to line. Denote

|D2u|2 =

N
∑

i,j=1

u2
i,j , ui,j =

∂2u

∂xi∂xj
.
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Multiplying (3.1) by − div(|∇u|p−2∇u), p > 2 and integrating on Ω by parts, we

have

1

p

d

dt
‖∇u(t)‖p

p +

∫

Ω

|∇u(t)|p+m−4|D2u(t)|2 dx(4.1)

+ Cp

∫

Ω

|∇u(t)|p+m−6|∇(|∇u(t)|2)|2 dx

− (N − 1)

∫

∂Ω

H(x)|∇u(t)|p+m−2 dS

6 − ‖u(t)‖α
α

∫

Ω

|u(t)|β−1u(t) div(|∇u(t)|p−2∇u(t)) dx ≡ B

with Cp = 1
4 (p − 2). It follows from (2.4) that

(4.2) B = β‖u(t)‖α
α

∫

Ω

|u(t)|β−1|∇u(t)|p dx

6 C‖u(t)‖α+β−1
∞

‖∇u(t)‖p
p 6 Ct−λ(α+β−1)‖∇u(t)‖p

p .

If H(x) 6 0 on ∂Ω and N > 1, then by the argument for the elliptic eigenvalue

problem (cf. [7]) there exists λ0 > 0 such that

(4.3) ‖∇v‖2
2 − (N − 1)

∫

∂Ω

v2H(x) dS > λ0‖v‖
2
1,2 , ∀v ∈ W 1,2(Ω).

From (4.1)–(4.3) we see that there exist C1 and C2, independent of p, such that

(4.4)
d

dt
‖∇u(t)‖p

p + C1‖|∇u(t)|(p+m−2)/2‖2
1,2 6 C2pt−λ(α+β−1)‖∇u(t)‖p

p .

Let p1 = m, pn = Npn−1 − m + 2, θn = N(1 − pn−1p
−1
n )(N − 1 + 2/N)−1,

n = 2, 3, . . . Then it follows from Lemma 1 that

(4.5) ‖∇u(t)‖pn
6 C2/(pn+m−2)‖∇u(t)‖1−θn

pn−1
‖|∇u(t)|(pn+m−2)/2‖

2θn/(pn+m−2)
1,2 .

Putting this into (4.4)(p = pn), we obtain

d

dt
‖∇u(t)‖pn

pn

+ C1C
−2/θn‖∇u(t)‖(pn+m−2)(1−1/θn)

pn−1
‖∇u(t)‖(pn+m−2)/θn

pn

6 C2pnt−λ(α+β−1)‖∇u(t)‖pn

pn

.

Then we take y1 = max{1, C0}, z1 = (1 + 2λ(α+ β))/m, where C0 is the constant

in the estimate (2.5).
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As the proof of Proposition 2, we can show that there exist a bounded sequence

{yn} and a convergent sequence {zn} such that

(4.6) ‖∇u(t)‖pn
6 ynt−zn , 0 < t 6 T,

for which zn → µ = (2(1 + 2λ(α + β)) + N2)/(2m + (m − 2)N2), see [11]. Then the

estimate (2.6) is obtained from (4.6) as n → ∞.

Now we consider the estimate (2.7). Let

F (t) =
1

m

∫

Ω

|∇u(t)|m dx.

Multiplying (1.1) by ut and integrating on Ω by parts, we obtain

‖ut(t)‖
2
2+F ′(t) = ‖u(t)‖α

α

∫

Ω

ut(t)|u(t)|β−1u(t) dx 6
1

2
‖ut(t)‖

2
2+

1

2
‖u(t)‖2α

α ‖u(t)‖2β
2β .

Hence,

(4.7)
1

2
‖u(t)‖2α

α ‖u(t)‖2β
2β − F

′

(t) >
1

2
‖ut(t)‖

2
2 .

Similarly, multiplying (1.1) by u(t) gives

(4.8)

‖∇u(t)‖m
m = ‖u(t)‖β+1

β+1‖u(t)‖α
α −

∫

Ω

u(t)ut(t) dx 6
1

2
‖ut(t)‖

2
2 +

1

2
‖∇u(t)‖m

m + C1.

This shows that

(4.9)
1

2
‖u(t)‖2α

α ‖u(t)‖2β
2β − F

′

(t) > λ1F (t) − C1

for some λ1 ∈ (0, 1) and C1 > 0. We now estimate the first term of (4.9).

By the assumption u0 ∈ W 1,m
0 (Ω), we obtain u0 ∈ Lm∗

(Ω) by the Sobolev em-

bedding theorem, where m∗ = mN/(N − m). Then, by Proposition 1, the solution

satisfies u(t) ∈ L∞(R+, Lm∗

(Ω)). Since α + β < m − 1 and 2β 6 m∗, we get

(4.10) ‖u(t)‖2α
α 6 C0, ‖u(t)‖2β

2β 6 C0, ∀t > 0,

where C0 depends only on the initial data u0. Then we have from (4.9) that

(4.11) F ′(t) + λ1F (t) 6 C0.

This implies that

(4.12) F (t) 6 F (0)e−λ1t + C0, t > 0,

or

(4.13) ‖∇u(t)‖m 6 ‖∇u0‖me−λ1t + C0, t > 0.

This is the estimate (2.7). We have completed the proof of Theorem 2. �

399



Acknowledgement. The authors express their sincere gratitude to the anony-

mous referees for a number of valuable comments and suggestions.

References

[1] J.Bebernes, A. Bressan: Thermal behavior for a confined reactive gas. J. Diff. Equ. 44
(1982), 118–133.

[2] C. S. Chen, M.Nakao and Y.Ohara: Global existence and gradient estimates for quasi-
linear parabalic equations of the m-Laplacian type with a strong perturbation. Differ.
Integral Equ. 14 (2001), 59–74.

[3] C. S. Chen: L∞ estimates of solution for the m-Laplacian equation with initial value in
Lq(Ω). Nonlinear Analysis 48 (2002), 607–616.

[4] C. S. Chen: On global attractor for m-Laplacian parabolic equation with local and non-
local nonlinearity. J. Math. Anal. Appl. 337 (2008), 318–332.

[5] W.A.Day: A decreasing property of solutions of parabolic equations with applications
to thermoelasticity. Quart. Appl. Math. 40 (1983), 468–475.

[6] E.Dibendetto: Degenerate Parabolic Equations. Springer-Verlag, Berlin, 1993.
[7] H.Engler, B.Kawohl and S. Luckhaus: Gradient estimates for solution of parabolic equa-
tions and systems. J. Math. Anal. Appl. 147 (1990), 309–329.

[8] O.A. Ladyzhenskaya, V.A. Solonnikov and N.N.Uraltseva: Linear and Quasilinear
Equations of Parabolic Type. American Mathematical Society, Providence, RI, 1969.

[9] F.C. Li, C.H.Xie: Global and blow-up solutions to a p-Laplacian equation with nonlocal
source. Computers Math. Appl. 46 (2003), 1525–1533.

[10] J. L. Lions: Quelques méthodes de résolution des problémes aux limites non linéaires.
Dunod, Paris, 1969.

[11] M.Nakao, C. S.Chen: Global existence and gradient estimates for quasilinear parabolic
equations of m-Laplacian type with a nonlinear convection term. J. Diff. Equ. 162 (2000),
224–250.

[12] Y.Ohara: L∞ estimates of solutions of some nonlinear degenerate parabolic equations.
Nonlinear Anal. TMA 18 (1992), 413–426.

[13] Y.Ohara: Gradient estimates for some quasilinear parabolic equations with nonmono-
tonic perturbations. Adv. math. Sci. Appl. 6 (1996), 531–540.

[14] P.Rouchon: Universal bounds for global solutions of a diffusion equation with a nonlocal
reaction term. J. Diff. Equ. 193 (2003), 75–94.

[15] R.Temam: Infinite-Dimensional Dynamical in Mechanics and Physics. Springer-Verlag,
New York, 1997.

[16] L.Veron: Coércivité et proprietes regularisantes des semigroups nonlineaires dans les es-
paces de Banach. Faculté des Sciences et Techniques, Université François Rabelais-tours,
France, 1976.

Author’s address: P u l u n H o u, C a i s h e n g C h e n, Department of Mathematics,
Hohai University, Nanjing 210098, P.R. China, e-mail: houpulun@163.com, cshengchen
@hhu.edu.cn.

400


		webmaster@dml.cz
	2020-07-03T19:17:08+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




