Article
Keywords:
$q$-integers; $q$-Bernstein operators; the Hahn-Banach theorem; modulus of continuity
Summary:
Using the $q$-Bernstein basis, we construct a new sequence $\{ L_{n} \}$ of positive linear operators in $C[0,1].$ We study its approximation properties and the rate of convergence in terms of modulus of continuity.
References:
[1] Kreĭn, M. G., Rutman, M. A.:
Linear operators leaving invariant a cone in a Banach space. Usp. Mat. Nauk (N.S.) 3 (1948), 3-95 Russian English translation: Amer. Math. Soc. Translation 1950 (1950), 128 pp.
MR 0027128
[2] Marinescu, G.: Normed Linear Spaces. Academic Press, Bucharest (1956), Romanian.
[4] Phillips, G. M.:
Bernstein polynomials based on the $q$-integers. Ann. Numer. Math. 4 (1997), 511-518.
MR 1422700 |
Zbl 0881.41008
[5] Videnskii, V. S.: On the polynomials with respect to the generalized Bernstein basis. In: Problems of modern mathematics and mathematical education, Hertzen readings. St-Petersburg (2005), 130-134 Russian.