Previous |  Up |  Next

Article

Keywords:
$q$-integers; $q$-Bernstein operators; the Hahn-Banach theorem; modulus of continuity
Summary:
Using the $q$-Bernstein basis, we construct a new sequence $\{ L_{n} \}$ of positive linear operators in $C[0,1].$ We study its approximation properties and the rate of convergence in terms of modulus of continuity.
References:
[1] Kreĭn, M. G., Rutman, M. A.: Linear operators leaving invariant a cone in a Banach space. Usp. Mat. Nauk (N.S.) 3 (1948), 3-95 Russian English translation: Amer. Math. Soc. Translation 1950 (1950), 128 pp. MR 0027128
[2] Marinescu, G.: Normed Linear Spaces. Academic Press, Bucharest (1956), Romanian.
[3] Ostrovska, S.: The convergence of $q$-Bernstein polynomials $(0. Math. Nachr. 282 (2009), 243-252. DOI 10.1002/mana.200610735 | MR 2493514 | Zbl 1173.41004
[4] Phillips, G. M.: Bernstein polynomials based on the $q$-integers. Ann. Numer. Math. 4 (1997), 511-518. MR 1422700 | Zbl 0881.41008
[5] Videnskii, V. S.: On the polynomials with respect to the generalized Bernstein basis. In: Problems of modern mathematics and mathematical education, Hertzen readings. St-Petersburg (2005), 130-134 Russian.
[6] Wang, H., Meng, F.: The rate of convergence of $q$-Bernstein polynomials for $0. J. Approx. Theory 136 (2005), 151-158. DOI 10.1016/j.jat.2005.07.001 | MR 2171684 | Zbl 1082.41007
Partner of
EuDML logo