Previous |  Up |  Next

Article

Keywords:
Novikov algebra; quadratic Novikov algebra; underlying Lie algebra
Summary:
Novikov algebras were introduced in connection with the Poisson brackets of hydrodynamic type and the Hamiltonian operators in formal variational calculus. In this note we prove that the underlying Lie algebras of quadratic Novikov algebras are 2-step nilpotent. Moreover, we give the classification up to dimension $10$.
References:
[1] Balinskii, A. A., Novikov, S. P.: Poisson brackets of hydrodynamic type, Frobenius algebras and Lie algebras. Sov. Math., Dokl. 32 (1985), 228-231. MR 0802121 | Zbl 0606.58018
[2] Bordemann, M.: Nondegenerate invariant bilinear forms on nonassociative algebras. Acta Math. Univ. Comen., New Ser. 66 (1997), 151-201. MR 1620480 | Zbl 1014.17003
[3] Burde, D.: Classical $r$-matrices and Novikov algebras. Geom. Dedicata 122 (2006), 145-157. DOI 10.1007/s10711-006-9059-y | MR 2295546 | Zbl 1118.17001
[4] Dubrovin, B. A., Novikov, S. P.: Hamiltonian formalism of one-dimensional systems of hydrodynamic type, and the Bogolyubov-Whitman averaging method. Sov. Math., Dokl. 27 (1983), 665-669. Zbl 0553.35011
[5] Dubrovin, B. A., Novikov, S. P.: On Poisson brackets of hydrodynamic type. Sov. Math., Dokl. 30 (1984), 651-654. MR 0770656
[6] Figueroa-O'Farrilla, J. M., Stanciu, S.: On the structure of symmetric self-dual Lie algebras. J. Math. Phys. 37 (1996), 4121-4134. DOI 10.1063/1.531620 | MR 1400838
[7] Gel'fand, I. M., Dikii, L. A.: Asymptotic behaviour of the resolvent of Sturm-Liouville equations and the algebra of the Korteweg-De Vries equations. Russ. Math. Surv. 30 (1975), 77-113. DOI 10.1070/RM1975v030n05ABEH001522 | MR 0508337 | Zbl 0334.58007
[8] Gel'fand, I. M., Dikii, L. A.: A Lie algebra structure in a formal variational calculation. Funct. Anal. Appl. 10 (1976), 16-22. DOI 10.1007/BF01075767 | MR 0467819 | Zbl 0347.49023
[9] Gel'fand, I. M., Dorfman, I. Y.: Hamiltonian operators and algebraic structures related to them. Funct. Anal. Appl. 13 (1980), 248-262. DOI 10.1007/BF01078363 | Zbl 0437.58009
[10] Xu, X. P.: Hamiltonian operators and associative algebras with a derivation. Lett. Math. Phys. 33 (1995), 1-6. DOI 10.1007/BF00750806 | MR 1315250 | Zbl 0837.16034
[11] Xu, X. P.: Hamiltonian superoperators. J. Phys. A: Math. Gen. 28 (1995), 1681-1698. DOI 10.1088/0305-4470/28/6/021 | Zbl 0852.58043
[12] Xu, X. P.: Variational calculus of supervariables and related algebraic structures. J. Algebra 223 (2000), 396-437. DOI 10.1006/jabr.1999.8064 | MR 1735154 | Zbl 1012.37048
[13] Zhu, F. H., Chen, Z. Q.: Novikov algebras with associative bilinear forms. J. Phys. A, Math. Theor. 40 (2007), 14243-14251. DOI 10.1088/1751-8113/40/47/014 | MR 2438123 | Zbl 1127.17002
Partner of
EuDML logo