Previous |  Up |  Next

Article

Keywords:
equations of electromagnetic theory; hyperbolic system of second order partial differential equations; initial value problem; analytical method; Fourier transform
Summary:
The time-dependent system of partial differential equations of the second order describing the electric wave propagation in vertically inhomogeneous electrically and magnetically biaxial anisotropic media is considered. A new analytical method for solving an initial value problem for this system is the main object of the paper. This method consists in the following: the initial value problem is written in terms of Fourier images with respect to lateral space variables, then the resulting problem is reduced to an operator integral equation. After that the operator integral equation is solved by the method of successive approximations. Finally, a solution of the original initial value problem is found by the inverse Fourier transform.
References:
[1] Andersen, N. D.: Real Paley-Wiener theorems for the inverse Fourier transform on a Riemannian symmetric space. Pac. J. Math. 213 (2004), 1-13. DOI 10.2140/pjm.2004.213.1 | MR 2040247 | Zbl 1049.43004
[2] Apostol, T. M.: Calculus I. Blaisdell Publishing Company Waltham, Massachusetts-Toronto-London (1967). MR 0214705
[3] Bang, H. H.: Functions with bounded spectrum. Trans. Am. Math. Soc. 347 (1995), 1067-1080. DOI 10.1090/S0002-9947-1995-1283539-1 | MR 1283539 | Zbl 0828.42009
[4] Burridge, R., Qian, J.: The fundamental solution of the time-dependent system of crystal optics. Eur. J. Appl. Math. 17 (2006), 63-94. DOI 10.1017/S0956792506006486 | MR 2228972 | Zbl 1160.78001
[5] Cohen, G. C.: Higher-Order Numerical Methods for Transient Wave Equations. Springer Berlin (2002). MR 1870851 | Zbl 0985.65096
[6] Courant, R., Hilbert, D.: Methods of Mathematical Physics, Vol. 2. Interscience Publishers New York-London (1962).
[7] Eom, H. J.: Electromagnetic Wave Theory for Boundary-Value Problems. Springer Berlin (2004). MR 2081952 | Zbl 1053.78001
[8] Evans, L. C.: Partial Differential Equations. AMS Providence (1998). MR 1625845 | Zbl 0902.35002
[9] Gronwall, T. H.: Note on the derivatives with respect to a parameter of the solutions of a system of differential equations. Ann. Math. 20 (1919), 292-296. DOI 10.2307/1967124 | MR 1502565
[10] Krowne, C. M.: Spectral-domain determination of propagation constant in biaxial planar media. Int. J. Electron. 3 (1985), 315-332. DOI 10.1080/00207218508920702
[11] Ludwig, D.: Conical refraction in crystal optics and hydromagnetics. Commun. Pure Appl. Math. 14 (1961), 113-124. DOI 10.1002/cpa.3160140203 | MR 0127703 | Zbl 0112.21202
[12] Melrose, R. B., Uhlmann, G. A.: Microlocal structure of involutive conical refraction. Duke Math. J. 46 (1979), 571-582. DOI 10.1215/S0012-7094-79-04630-1 | MR 0544247 | Zbl 0422.58026
[13] Ortner, N., Wagner, P.: Fundamental matrices of homogeneous hyperbolic systems. Applications to cyrystal optics, elastodynamics, and piezoelectromagetism. ZAMM, Z. Agew. Math. Mech. 84 (2004), 314-346. DOI 10.1002/zamm.200310130 | MR 2057145
[14] Sheen, J.: Time harmonic electromagnetic fields in an biaxial anisotropic medium. J. Electromagn. Waves Appl. 19 (2005), 754-767. DOI 10.1163/1569393054069082 | MR 2191918
[15] Tuan, V. K., Zayed, A. I.: Paley-Wiener-type theorems for a class of integral transforms. J. Math. Anal. Appl. 266 (2002), 200-226. DOI 10.1006/jmaa.2001.7740 | MR 1876778 | Zbl 0998.44001
[16] Uhlmann, G. A.: Light intensity distribution in conical refraction. Commun. Pured Appl. Math. 35 (1982), 69-80. DOI 10.1002/cpa.3160350104 | MR 0637495 | Zbl 0516.35055
[17] Vladimirov, V. S.: Equations of Mathematical Physics. Marcel Dekker New York (1971). MR 0268497 | Zbl 0231.35002
[18] Yakhno, V. G.: Constructing Green's function for time-depending Maxwell system in anisotropic dielectrics. J. Phys. A: Math. Gen. 38 (2005), 2277-2287. DOI 10.1088/0305-4470/38/10/015 | MR 2126517
[19] Yakhno, V. G., Yakhno, T. M., Kasap, M.: A novel approach for modelling and simulation of electromagnetic waves in anisotropic dielectrics. Int. J. Solids Struct. 43 (2006), 6261-6276. DOI 10.1016/j.ijsolstr.2005.07.028 | MR 2265178
[20] Yakhno, V. G.: Computing and simulation of time-dependent electromagnetic fields in homogeneous anisotropic materials. Int. J. Eng. Sci. 46 (2008), 411-426. DOI 10.1016/j.ijengsci.2007.12.005 | MR 2401286 | Zbl 1213.78029
Partner of
EuDML logo