Previous |  Up |  Next

Article

Keywords:
Geodesic mapping; Einstein tensor
Summary:
In this paper there are discussed the geodesic mappings which preserved the Einstein tensor. We proved that the tensor of concircular curvature is invariant under Einstein tensor-preserving geodesic mappings.
References:
[1] Chepurna, O., Kiosak, V., Mikeš, J: Conformal mappings of Riemannian spaces which preserve the Einstein tensor. J. Appl. Math. Aplimat 3, 1 (2010), 253–258.
[2] Mikeš, J.: On geodesic mappings of Einstein spaces. Math. Notes 28 (1981), 922–923, Translation of Mat. Zametki 28 (1980), 935–938. DOI 10.1007/BF01709156 | MR 0603226
[3] Mikeš, J.: Geodesic mappings of affine-connected and Riemannian spaces. J. Math. Sci. 78, 3 (1996), 311–333. DOI 10.1007/BF02365193 | MR 1384327
[4] Mikeš, J., Hinterleitner, I., Kiosak, V.: On the theory of geodesic mappings of Einstein spaces and their generalizations. AIP Conf. Proc. 861 (2006), 428–435.
[5] Mikeš, J., Kiosak, V. A., Vanžurová, A.: Geodesic mappings of manifolds with affine connection. Palacky University Press, Olomouc, 2008. MR 2488821 | Zbl 1176.53004
[6] Mikeš, J., Vanžurová, A., Hinterleitner, I.: Geodesic mappings and some generalizations. Palacky University Press, Olomouc, 2009. MR 2682926 | Zbl 1222.53002
[7] Sinyukov, N. S.: Geodesic mappings of Riemannian spaces. Nauka, Moscow, 1979. MR 0552022 | Zbl 0637.53020
[8] Yano, K.: Concircular Geometry. Proc. Imp. Acad. 16 (Tokyo), (1940), 195–200, 354–360, 442–448, 505–511. Zbl 0025.08504
Partner of
EuDML logo