Previous |  Up |  Next

Article

Keywords:
Basic algebra; implication algebra; implication reduct; equivalential algebra; equivalential reduct
Summary:
A term operation implication is introduced in a given basic algebra $\mathcal {A}$ and properties of the implication reduct of $\mathcal {A}$ are treated. We characterize such implication basic algebras and get congruence properties of the variety of these algebras. A term operation equivalence is introduced later and properties of this operation are described. It is shown how this operation is related with the induced partial order of $\mathcal {A}$ and, if this partial order is linear, the algebra $\mathcal {A}$ can be reconstructed by means of its equivalential reduct.
References:
[1] Abbott, J. C.: Orthoimplication algebras. Studia Logica 35 (1976), 173–177. DOI 10.1007/BF02120879 | MR 0441794 | Zbl 0331.02036
[2] Chajda, I., Eigenthaler, G., Länger, H.: Congruence Classes in Universal Algebra. Heldermann Verlag, Lemgo (Germany), 2003. MR 1985832
[3] Chajda, I., Halaš, R., Kühr, J.: Semilattice Structures. Heldermann Verlag, Lemgo (Germany), 2007. MR 2326262 | Zbl 1117.06001
[4] Chajda, I., Kolařík, M.: Independence of axiom system of basic algebras. Soft Computing 13, 1 (2009), 41–43. DOI 10.1007/s00500-008-0291-2 | Zbl 1178.06007
[5] Cignoli, R. L. O., D’Ottaviano, I. M. L., Mundici, D.: Algebraic Foundations of Many-valued Reasoning. Kluwer, Dordrecht–Boston–London, 2000. MR 1786097
[6] Kowalski, T.: Pretabular varieties of equivalential algebras. Reports on Mathematical Logic 33 (1999), 1001–1008. MR 1764179 | Zbl 0959.08004
[7] Megill, N. D., Pavičić, M.: Quantum implication algebras. Int. J. Theor. Phys. 42, 12 (2003), 2807–2822. DOI 10.1023/B:IJTP.0000006007.58191.da | MR 2023776 | Zbl 1039.81007
[8] Słomczynska, K.: Equivalential algebras. Part I: Representation. Algebra Universalis 35 (1996), 524–547. DOI 10.1007/BF01243593 | MR 1392281
[9] Tax, R. E.: On the intuitionistic equivalential calcalus. Notre Dame Journal of Formal Logic 14 (1973), 448–456. DOI 10.1305/ndjfl/1093891099 | MR 0329866
Partner of
EuDML logo