[1] Abada, N., Agarwal, R. P., Benchohra, M., Hammouche, H.:
Existence results for nondensely defined impulsive semilinear functional differential equations with state-dependent delay. Asian-Eur. J. Math. 1, 4 (2008), 449–468.
DOI 10.1142/S1793557108000382 |
MR 2474181 |
Zbl 1179.34070
[2] Adimy, M., Bouzahir, H., Ezzinbi, K.:
Local existence and stability for some partial functional differential equations with unbounded delay. Nonlinear Anal. 48 (2002), 323–348.
DOI 10.1016/S0362-546X(00)00184-X |
MR 1869515
[4] Ait Dads, E., Ezzinbi, K.:
Boundedness and almost periodicity for some state-dependent delay differential equations. Electron. J. Differential Equations 2002, 67 (2002), 1–13.
MR 1921140
[5] Aiello, W. G., Freedman, H. I., Wu, J.:
Analysis of a model representing stage-structured population growth with state-dependent time delay. SIAM J. Appl. Math. 52, 3 (1992), 855–869.
DOI 10.1137/0152048 |
MR 1163810 |
Zbl 0760.92018
[6] Anguraj, A., Arjunan, M. M., Hernàndez, E. M.:
Existence results for an impulsive neutral functional differential equation with state-dependent delay. Appl. Anal. 86, 7 (2007), 861–872.
DOI 10.1080/00036810701354995 |
MR 2355543
[7] Bainov, D. D., Simeonov, P. S.:
Systems with Impulsive effect. Horwood, Chichister, 1989.
MR 1010418
[8] Benchohra, M., Henderson, J., Ntouyas, S. K.:
Impulsive Differential Equations and Inclusions. Hindawi Publishing Corporation, Vol 2, New York, 2006.
MR 2322133 |
Zbl 1130.34003
[14] Hale, J., Kato, J.:
Phase space for retarded equations with infinite delay. Funkc. Ekvac. 21 (1978), 11–41.
MR 0492721 |
Zbl 0383.34055
[15] Hale, J. K., Verduyn Lunel, S. M.:
Introduction to Functional Differential Equations. Applied Mathematical Sciences 99, Springer, New York, 1993.
MR 1243878 |
Zbl 0787.34002
[17] Hartung, F.:
Parameter estimation by quasilinearization in functional differential equations with state-dependent delays: a numerical study. Proceedings of the Third World Congress of Nonlinear Analysts, Part 7 (Catania, 2000), Nonlinear Anal. 47 (2001), 4557–4566.
MR 1975850 |
Zbl 1042.34582
[19] Hernández, E., Prokopczyk, A., Ladeira, L.:
A note on partial functional differential equations with state-dependent delay. Nonlinear Anal. Real World Appl. 7 (2006), 510–519.
MR 2235215 |
Zbl 1109.34060
[20] Hernández, E., Sakthivel, R., Tanaka Aki, S.:
Existence results for impulsive evolution differential equations with state-dependent delay. Electron. J. Differential Equations 2008, 28 (2008), 1–11.
MR 2390434
[21] Hino, Y., Murakami, S., Naito, T.:
Functional Differential Equations with Unbounded Delay. Springer-Verlag, Berlin, 1991.
MR 1122588
[22] Kolmanovskii, V., Myshkis, A.:
Introduction to the Theory and Applications of Functional-Differential Equations. Kluwer Academic Publishers, Dordrecht, 1999.
MR 1680144 |
Zbl 0917.34001
[23] Lakshmikantham, V., Bainov D. D., Simeonov, P. S.:
Theory of Impulsive Differntial Equations. World Scientific, Singapore, 1989.
MR 1082551
[24] Lakshmikantham, V., Wen, L., Zhang, B.:
Theory of Differential Equations with Unbounded Delay. Mathematics and its Applications, Kluwer Academic Publishers, Dordrecht, 1994.
MR 1319339 |
Zbl 0823.34069
[27] Samoilenko, A. M., Perestyuk, N. A.:
Impulsive Differential Equations. World Scientific, Singapore, 1995.
MR 1355787 |
Zbl 0837.34003
[28] Willé, D. R., Baker, C. T. H.:
Stepsize control and continuity consistency for state-dependent delay-differential equations. J. Comput. Appl. Math. 53 (1994), 163–170.
DOI 10.1016/0377-0427(94)90043-4 |
MR 1306123
[29] Wu, J.:
Theory and Applications of Partial Functional Differential Equations. Springer, New York, 1996.
MR 1415838 |
Zbl 0870.35116