[1] Basile, G., Marro, G.:
Controlled and Conditioned Invariants in Linear System Theory. Prentice Hall, New Jersey, 1992.
MR 1149379 |
Zbl 0758.93002
[2] Bhattacharyya, S. P.:
Generalized controllability, controlled invariant subspace and parameter invariant control. SIAM J. Algebraic Discrete Methods 4 (1983), 4, 529–533.
DOI 10.1137/0604053 |
MR 0721623
[3] Bicchi, A., Melchiorri, C., Balluchi, D.:
On the mobility and manipulability of general multiple limb robots. IEEE Trans. Automat. Control 11 (1995), 2, 215–228.
DOI 10.1109/70.370503
[4] Bicchi, A., Prattichizzo, D.:
Manipulability of cooperating robots with unactuated joints and closed-chain mechanisms. IEEE Trans. Robotics and Automation 16 (2000), 4, 336–345.
DOI 10.1109/70.864226
[5] Bicchi, A., Prattichizzo, D., Mercorelli, P., Vicino, A.: Noninteracting force/motion control in general manipulation systems. In: Proc. 35th IEEE Conf. on Decision Control, CDC ’96, Kobe 1996.
[6] Isidori, A.:
Nonlinear Control Systems: An Introduction. Springler-Verlag, Berlin 1989.
MR 1015932
[7] Marro, G., Barbagli, F.:
The algebraic output feedback in the light of dual lattice structures. Kybernetika 35 (1999), 6, 693–706.
MR 1747970
[8] Mason, M. T., Salisbury, J. K.: Robot Hands and the Mechanics of Manipulation. The MIT Press, Cambridge 1985.
[9] Meirovitch, L.:
Analytical Methods in Vibrations. Macmillan Pub. Co., Inc., New York 1967.
Zbl 0166.43803
[10] Mercorelli, P.:
A subspace to describe grasping internal forces in robotic manipulation systems. J. Math. Control Sci. Appl. 1 (2007), 1, 209-216.
Zbl 1170.93317
[11] Mercorelli, P.:
Geometric structures for the parameterization of non-interacting dynamics for multi-body mechanisms. Internat. J. Pure Appl. Math. 59 (2010), 3, 257–273.
MR 2650259 |
Zbl 1203.93054
[12] Mercorelli, P., Prattichizzo, D.:
A geometric procedure for robust decoupling control of contact forces in robotic manipulation. Kybernetika 39 (2003), 4, 433-445.
MR 2024524 |
Zbl 1249.93046
[13] Prattichizzo, D., Bicchi, A.:
Consistent task specification for manipulation systems with general kinematics. Amer. Soc. Mech. Engrg. 119 (1997), 760–767.
Zbl 1026.70007
[14] Prattichizzo, D., Bicchi, A.: Dynamic analysis of mobility and graspability of general manipulation systems. Trans. Robotic Automat. 14 (1998), 2, 251–218.
[15] Prattichizzo, D., Mercorelli, P.: Motion-decoupled internal force control in grasping with visco-elastic contacts. In: Proc. IEEE Conf. in Robotic and Automation, ICRA 2000, San Francisco 2000.
[16] Prattichizzo, D., Mercorelli, P.:
On some geometric control properties of active suspension systems. Kybernetika 36 (2000), 5, 549–570.
MR 1882794
[17] Wonham, W. M.:
Linear Multivariable Control: A Geometric Approach. Springer Verlag, New York 1979.
MR 0569358 |
Zbl 0424.93001
[18] Yamamoto, Y., Yun, X.:
Effect of the dynamic interaction on coordinated control of mobile manipulators. IEEE Trans. Robotics Automat. 12 (1996), 5, 816–824.
DOI 10.1109/70.538986