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K Y BE R NE T IK A — VO L UM E 4 6 ( 2 0 1 0 ) , NU MB E R 5 , P AGE S 8 5 0 – 8 6 9

ROBUST DECOUPLING THROUGH ALGEBRAIC

OUTPUT FEEDBACK IN MANIPULATION SYSTEMS

Paolo Mercorelli

This paper investigates the geometric and structural characteristics involved in the
control of general mechanisms and manipulation systems. These systems consist of multiple
cooperating linkages that interact with a reference member of the mechanism (the “object”)
by means of contacts on any available part of their links. Grasp and manipulation of an
object by the human hand is taken as a paradigmatic example for this class of manipulators.
Special attention is devoted to the output specification and its controllability. An example
design of a force controller using algebraic output feedback is presented at the end of
this paper. In this example, a matrix representing a static output feedback is designed.
The coefficients of this matrix are the weights for the sensed outputs. With the approach
proposed in this paper, a robust decoupling is obtained between the output feedback and
the contact forces and joint positions.

Keywords: geometric approach, manipulators, force/motion control

Classification: 93D09, 19L64, 70Q05, 14L24

1. INTRODUCTION

In the past three decades, research on the geometric approach to dynamic systems
theory and control has allowed this approach to become a powerful and a thor-
ough tool for the analysis and synthesis of dynamic systems [1, 6, 17]. Over the
same time period, mechanical systems used in industry and developed in research
labs have also evolved rapidly. Robotics is a notable case of such evolution. The
robotics community has developed sophisticated analysis and control techniques to
meet increasing requirements on the control of mechanical systems. These increas-
ing requirements are motivated by higher performance specifications, an increasing
number of degrees-of-freedom, and the introduction of the interacting robotic limbs.
General systems of multiple interacting robot limbs can be used to model arbitrary
mechanisms. Typical robotics concepts and tools, such as manipulability analysis,
can then be applied to such systems [3] and [4]. A unified control theory of mechan-
ical systems is conceivable by drawing upon recent results in robotics and extending
them to general classes of mechanisms. To achieve this goal, it is necessary to remove
certain assumptions that limit the generality of cooperating robot limbs and to fully
understand the corresponding theory. Generalizations of robotic models that must
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Fig. 1. Vector notation for general manipulation system analysis.

be considered to achieve this goal include:

• Each interacting limb can interact with the object and with any of its links.

• A limb’s interaction with the object can be specified by several different models,
including rigid attachment, rolling contact, and sliding contact between the
bodies, see Figure 1.

These generalizations entail modifications in the theoretical approach. In fact,
a survey of current literature shows recent advances towards the goal of a general,
unified treatment of manipulation systems. In particular, recent results in [12, 15]
and [16] gave important details concerning additional advances. References [12] and
[16] mark progress in the analysis and synthesis of geometric controller for mechanical
systems, and [10] proposes an explicit new matrix structure for grasping internal
forces. Reference [11] reports the possibility of parameterizing input controlled
subspaces to guarantee non-interaction. This paper enhances the results presented in
[12]. In [12], a robust decoupling controller using an algebraic state input feedback is
presented, while this paper presents a robust decoupling controller using an algebraic
output-input feedback. In general, the design of output-input feedback controllers
is a very ambitious task and not only in relation to the geometric approach. This
approach allows observers, normally present in high-order systems, to be avoided.
The force/motion control problem has attracted significant attention over last decade
in the fields of robotic manipulation and mobile manipulators. Approaches exploiting
input-output decoupling controllers are found, for instance, in the work [18].

The geometric approach allows very elegant solutions to control problems. Nev-
ertheless, robustness analysis using a linear geometric control offers answers through
rank conditions of matrices that are necessary conditions. These conditions are often
not constructive conditions. Even though the rank conditions offer simple “on-off”
conditions, it is also possible to measure the robustness. In [12], a robust decoupling
controller is obtained using a state input feedback controller. The drawback of this
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approach consists of a wide sensing structure. In fact, the whole state space should
be available and sensed. With the approach proposed in this paper, the robust de-
coupling is obtained with an output feedback from the contact forces and the joint
positions. The goal of this paper is to state structural conditions for achieving an
output-input feedback force/motion robust decoupling. An explicit expression of a
solution for a controlled and conditioned subspace is proposed. A complete con-
structive procedure for the design of the decoupling controller is presented. At the
end, a numerical example with computer simulations is shown.

1.1. Organization of the paper

The paper is organized as follows. Section 2 considers the kinematic and the dynamic
model. In Section 3 the general problem of internal forces is considered. Section 4
presents the structural properties required to achieve robust decoupling. The paper
closes with simulations and a conclusion.

2. KINEMATIC AND DYNAMIC MODEL

This section summarises notation and some results from the analysis of dynamics
for manipulation with general kinematics. The model of the general manipulation
system is comprised of a mechanism with an arbitrary number of actuated links and
of an object in contact, at one or more points, with some of the links. Let q ∈ IRq

be the vector of generalised coordinates that completely describes the configuration
of the manipulation system. Let τ ∈ IRq be the vector of actuated (rotoidal) joint
torques and (prismatic) joint forces. Additionally, let u ∈ IRd be the vector of the
generalised coordinates for the object (d = 3 for 2D cases while d = 6 for 3D cases),
and let w ∈ IRd be the vector of external disturbances acting on the object. To
clarify the vector notation, see Figure 1. The lumped parameter visco–elastic model
at the ith contact is described by introducing contact vectors cm

i and co
i . The d–

dimensional contact vector cm
i (co

i ) represents the coordinates of a fixed frame at
the contact point on the link of the manipulator (on the object). The contact force
(fi) and the moment (mi) exchanged at the contact are represented by the vector
ti = [fT

i ,mT
i ] which, according to the visco–elastic model, can be written as follows:

ti = KiHi(c
m
i − co

i ) + BiHi(ċ
m
i − ċo

i ).

The parameters indicated with Ki and Bi are the stiffness and damping matrices,
respectively. Hi is a constant selection matrix describing several types of contact
models. In three-dimensional space and in the presence of hard-contact, matrix
Ki and Bi are matrices sized 3 × 3. If the contact is soft, these matrices have
dimension 4 × 3, see [8]. Matrix Hi is of dimension 3 × 6 for hard-contact and of
dimension 4×6 for soft contact. Notice that the presence of moment mi in ti depends
upon the contact interaction type. Now, let t = [f1, · · · , fn, m1, · · · , mn] be the
overall contact force vector built by grouping all the vectors ti for all n contacts.
Accordingly, vector t is given by t = KH(cm − co) + BH(ċm − ċo). The Jacobian
J and grasp matrix G are defined as J = H δcm

δq
and GT = H δco

δu
. Thus, the local
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approximation of the contact force vector t can be written as

δt = K
(

Jδq − GT δu
)

+ B
(

Jδq̇ − GT δu̇
)

. (1)

The following dynamic model is the linearization of the nonlinear dynamics of
manipulation systems derived in [14]. Consider a reference equilibrium configuration
(q,u, q̇, u̇, τ, t) = (qo,uo,0,0, τo, to), such that τo = JT to and wo = −Gto. In
the neighborhood of such an equilibrium, linearized dynamics of the manipulation
system can be written as follows:

ẋ = Ax + Bττ ′ + Bww′, (2)

such that state, input and disturbance vectors are defined as departures from the
following reference equilibrium configuration:

x =
[

(q − qo)
T (u− uo)

T q̇T u̇T
]T

,

τ ′ = τ − JT to, w′ = w + Gto and

A =

[

0 I

Lk Lb

]

; Bτ =







0

0

M−1

h

0






; Bw =







0

0

0

M−1

o






,

to be more precise

A =









0 0 Iq 0

0 0 0 Iu

−M−1
h JT KJ M−1

h JT KGT −M−1
h JTBJ M−1

h JT BGT

M−1
o GKJ −M−1

o GKGT M−1
o GBJ −M−1

o GBGT









, (3)

where Mh and Mo are the inertia matrices of the manipulator and the object,
respectively. To simplify the notation we will henceforth omit the prime in τ ′ and
w′. Simple expressions are obtained for Lk and Lb by neglecting terms due to gravity
variations, rolling phenomena at the contacts, and local variations of the Jacobian
and grasp matrices and under the hypothesis that stiffness and damping matrices
are proportional (B ∝ K), see [9].

Lk = −M−1Pk; Lb = −M−1Pb

where
M = diag(Mh,Mo);
Pk = ST KS;
Pb = STBS;
S = [J − GT ].

The remainder of this section provides results obtained in [14] on the control of
internal forces, a problem of paramount importance in robotic manipulation. Let
us define t′ as the first order approximation of departures of contact force vector t
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from the reference equilibrium to. According to equation (1), t′ (henceforth t) can
be regarded as an output of the linearized model (2), t = Ctx where

Ct =
[

KJ − KGT BJ − BGT
]

.

When manipulation systems with general kinematics are taken into account, [13]
not all of the internal forces are controllable. In [5], the reachable internal forces of

subspace Rti,τ for dynamic systems (2) are analyzed and the internal force output
eti is defined as the projection of the force vector t onto subspace Rti,τ

eti = Etix where

Eti = [Q(K) 0 Q(K) 0] and

Q(K) = (I − KGT (GKGT )−1G)KJ.

(4)

3. DECOUPLING OF INTERNAL FORCES

In many advanced robotics tasks, visco–elasticity at the contacts cannot be ne-
glected, and decoupling control of the internal forces from the object’s motions is
needed. Rigid–body kinematics [3, 14] involves motions of the object and manip-
ulator which do not include visco–elastic deformations. For this reason, they are
regarded as the low–energy motions of the whole system. Rigid–body kinematics
represents the easiest way to move the manipulated object, and therefore it is of par-
ticular interest in controlling manipulation. In [3], coordinated rigid–body motions
of the mechanisms are defined as motions of the manipulator δq and of the object
δu such that

[

δq
δu

]

∈ im

[

Γqc

Γuc

]

where
JΓqc = GTΓuc. (5)

Thus, rigid–body object motions are those in the column space of Γuc. The output
euc is defined as the projection of object displacements u onto the column space of
Γuc,

euc = Eucx where

Euc = ΓP
uc [0 I 0 0] and

ΓP
uc = Γuc(Γ

T
ucΓuc)

−1ΓT
uc.

(6)

In this paper, we adopt the notion of internal force decoupling control that is
formalized by the following definition.

Definition 1. Consider the couple (A,Bτ ) in (2). The control law τ = Fx+Uτref

is an internal force control decoupled from the object motion if the state feedback
and the input selection matrices are such that

a) Rti = min I (A + BτF,BτU) ⊆ kerEuc;
b) imEti = Eti min I (A + BτF,BτU)

where min I (A,B) is the minimal subspace A–invariant containing the column
space of B.
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Remark 1. Note that imBτU satisfies the following relationship: imBτU =
im (Bτ ) ∩Rti. Also, im (Bτ ) ∩Rti 6= 0. In other words, the system must be no-left
invertible.

Observe that the decoupling control of internal forces does not affect the rigid–
body object motion (claim a) and preserves the reachability of internal forces (claim
b). In [5], it has been proven that for general manipulation systems with ker (GT ) 6=
{0}, the problem of finding a decoupling internal force control always has a solution,
and a decoupling feedback control law is proposed. The choice of matrices F and U

is based on the geometric concept of the controlled invariant, see [1].

4. ROBUST DECOUPLING CONTROL OF CONTACT FORCES

The control law in [5] is model based, so an accurate identification procedure of the
model’s parameters is needed. While techniques estimating the dynamic parameters
of the object and of the manipulator are well established, the identification of the
visco–elastic contact matrices K and B still remains a hard task. Also, a certain
degree of uncertainty is present in the system model. This section is devoted to the
analysis and design of a robust decoupling controller for manipulation systems with
structured (visco–elastic) uncertainties.

We assume that a structured uncertainty is present in the visco–elastic contact
behavior. In particular, we assume that the estimated stiffness and damping matrices
have the following structures: Ks = ksZ and Bs = bsZ. In these structures, matrix
Z represents the a priori knowledge of the visco–elastic behavior, while ks and bs

(real positive values) represent estimated stiffness and damping parameters. We
assume that the measured values for ks and bs are corrupted by errors ∆k and ∆b,
as described by ∆k ∈ [∆k, ∆k] and ∆b ∈ [∆b, ∆b], thus it holds

K = (ks + ∆k)Z;
B = (bs + ∆b)Z.

(7)

The uncertainties on the stiffness and damping matrices reflect the linearized dynam-
ics of equation (2) and the output matrix of equation (4), which becomes uncertain.
This is denoted by:







ẋ = A(∆k, ∆b)x + Bτ τ ;
eti = Eti(∆k, ∆b)x;
euc = Eucx,

(8)

where
A(∆k, ∆b) = As + ∆kAke + ∆bAbe;
Eti(∆k, ∆b) = Es + ∆kEke + ∆bEbe.

(9)

As and Es represent the state and force output matrices from Section 2 that are
calculated with nominal values K = ksZ and B = bsZ, while

Ake =

»

0 0

ST ZS 0

–

; Abe =

»

0 0

0 ST ZS

–

;

Eke = [Q(Z) 0 0 0] ; Ebe = [0 0 Q(Z) 0] ,
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specify the structure of the system uncertainty. After having characterized the struc-
tured uncertainties affecting the manipulation dynamics, we formalized the concept
of a robust internal force decoupling controller [2] by extending the requirements on
decoupling and reachability of Definition 1.

Definition 2. Consider the set of dynamic systems (A(∆k, ∆b),Bτ ) for all
(∆k, ∆b), a subspace V is a generalized controlled invariant. If there exists a constant
matrix F, such that

(A(∆k, ∆b) + BτF)V ⊆ V ∀(∆k, ∆b).

Using definition (6), it is easy to extend the generalization of controlled invariants
to self–bounded controlled invariants. Then, it is possible to define

V⋆(A(∆k, ∆b),Bτ , ker (Euc))

as the maximal generalized (A(∆k, ∆b),Bτ )–controlled invariant contained in the
null space of the (object motion) output matrix Euc. The algorithm in [2] allows
one to evaluate the subspace V⋆. This computation is the first step for the synthesis
of the robust-decoupling controller.

Algorithm for the computation of V⋆

V0 = ker (Euc);
Vk+1 = Vk ∩ A−1

s (imBτ ,Vk) ∩ A−1
ke Vk ∩ A−1

be Vk;
if Vn = Vn−1, then Vn = V⋆(A(·),Bτ , ker (Euc))

Remark 1. It can be shown that the state feedback matrix F, which makes the
subspace V⋆ invariant with respect to (As+BτF), fulfils the condition of Definition 6.
Recall that As is equal to A(∆k, ∆b) for (∆k, ∆b) = (0, 0). Therefore the subspace
V⋆ is controlled invariant with respect to the pair (As,Bτ ).

Let us define the input selection matrix U as

im (BτU) = V⋆ ∩ imBτ . (10)

Then, the following proposition, whose proof comes easily from Remark 1, shows
the state feedback matrices F and the input selectors U decoupling internal forces
from object motions. This occurs despite the visco–elastic uncertainties.

Proposition 1. A necessary condition for claim b in Definition 3 to hold is

EtiV
⋆ = imEti.
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P r o o f . The proposition is simply proven by observing that for any choice of F

and U, the minimal invariant min I ((A(∆k, ∆b) + BτF),BτU) is a subspace of
V⋆ for all (∆k, ∆b). Notice that the existence of non–empty V⋆ is necessary for the
fulfillment of the decoupling condition (a). �

Proposition 2. Choose matrices F and U according to Remark 1 and to Proposi-
tion 3. Conditions

dim(V⋆) = rank(BτU),
EtiV

⋆ = imEti,

are sufficient for claim b) in Definition 3 to hold.

P r o o f . Simply observe that under these conditions

min I ((A(∆k, ∆b) + BτF),BτU)

is equal to V⋆, which does not depend on corrupting errors (∆k, ∆b). �

Definition 3. Consider the class of linear systems

(

A(∆k, ∆b),Bτ ,

[

Eti(∆k, ∆b)
Euc

])

∀(∆k, ∆b).

The control law τ = LCx + Uτref , where matrix C is the matrix of the measured
output, is a decoupling control of internal forces that are robust with respect to the

visco–elastic uncertainties if

a) min I ((A(∆k, ∆b) + BτLC),BτU) ⊆ ker Euc;

b) imEti(∆k, ∆b) = Eti(∆k, ∆b) min I ((A(∆k, ∆b) + BτLC),BτU) .

Definition 4. A subspace V⋆ is a generalized-controlled invariant if

A(∆k, ∆b)V⋆ ⊆ V⋆ ⊕ B ∀(∆k, ∆b).

Definition 5. A subspace V⋆ is a generalized-conditioned invariant if

A(∆k, ∆b)(V⋆ ∩ ker(C)) ⊆ V⋆ ∀(∆k, ∆b).

For further details about these definitions, see [1].
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4.1. Algebraic output decoupling of internal forces

In this section, we focus on the decoupling control of internal forces. This is a control
goal that is less ambitious than the non-interaction of internal forces and rigid–body
object motions.

Definition 6. Consider the set of dynamic systems (A(∆k, ∆b),Bτ ) for all
(∆k, ∆b). A subspace V⋆ is a generalized-conditioned invariant if there exists a
constant matrix L such that

(A(∆k, ∆b) + BτLC)V⋆ ⊆ V⋆ ∀(∆k, ∆b).

Let us define the input selection matrix U as

im(BτU) = V⋆ ∩ imBτ . (11)

Proposition 3. The decoupling condition (a) of Definition 3 is satisfied iff the
maximal controlled invariant V⋆ is not empty, and the input selection matrix U is
not null.

The P r o o f of this Proposition is straightforward. 2

Proposition 4. Choose matrices L and U according to Definition 6 and Proposi-
tion 3. Condition

rank(Q(Z)) = rank(EtiBτU)

is sufficient for claim b) of Definition 3 to hold.

P r o o f . Since K ∝ Z, from the definition of matrix Q(·) in (4), it ensures
that the column spaces of Eti coincides with the column space of Q(Z). Thus,
rank(Q(Z)) = rank(EtiBτU) implies that im(Eti) = im(EtiBτU), and the proof
ends. �

From Definition 6 and Proposition 4, it is possible to question whether matrix
L exists. The matrix L represents a static-output feedback. The sensed outputs
are weighted by the coefficients of the matrix L. It will be shown that the decou-
pling control of the internal forces can be obtained by means of an algebraic output
feedback control from the sensed output consisting of contact forces t and of manip-
ulator joint positions q. These have an output relationship for the linearized model
denoted by the following:

ym = Cx

C =

[

Iq×q 0 0 0

KJ −KGT BJ −BGT

]

.
(12)
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Under the assumptions of non-indeterminacy ker (GT ) = 0 and isotropy K = αB

and from (5), the null space of C is easily computed as

ker(C) = im









0 0 0

0 I 0

Γqc 0 ker(J)
Γuc −αI 0









.

Proposition 5. Given basis Γuc defined in (6), then ker(ΓT
uc) is M−1

o GKGT –
invariant.

P r o o f . Considering that im(Γuc) ⊕ im(Γ⊥
uc) = im(Iu) and M−1

o GKGT (Γuc) ⊕
M−1

o GKGT(Γ⊥
uc) = im(Iu) and that M−1

o GKGT (Γuc) ∪ M−1
o GKGT(Γ⊥

uc) = 0.
�

Remark 2. The subspace null of Q can be calculated very easily using ker(Q) =
ker(J) + S, where S = {s|KJs ∈ ker(I − KGT (GKGT )−1G) = im(KGT ), s /∈
ker(J)}. From (6), it is easy to show that: S = im(Γqc) and thus:

ker(Q) = im(Γr) + im(Γqc). (13)

If no redundant movements are present, then im(Γr) = 0. This yields ker(Q) =
im(Γqc) and rank(kerQ) = r + c, where r is the dimension of the redundant move-
ment subspace and c is dimension of the movement coordinate subspace. To show
im(Eti) = im(Eti(V

⋆ ∩ imBτ )) ∀ K and ∀ B, it will be enough to show the following:

EtiV
⋆ = im(Eti), (14)

To prove (14), it is shown that

ker(Q) ∩ im
[

Γh SqZ
]

= 0, (15)

and
rank(

[

Γh SqZ
]

) = rank(Q). (16)

Lemma 1.

ker(Q) ∩ im
[

Γh SqZ
]

= 0. (17)

P r o o f . From the previous remark, (17) can be verified by checking if vectors x,
y, v, and w in that the equation

Γrx + Γqcy = Γhv + SqZw

exist. In fact, from (5) im(Γqc) does not belong to the ker(J), thus im(Γqc) ⊆
im(Mh

−1JT ). From (25) and (26), im(Γh) and im(Sq) are also included in
im(Mh

−1JT ). im(Γr) is not included in im(Mh
−1JT ) because this is included in
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ker(J)1. Thus, the above mentioned equation could be written in the following way:

Γqcy = Γhv + SqZw. (18)

If this equation is true, then multiplying by M−1
o GKJ equation (18) it follows

M−1
o GKJΓqcy = M−1

o GKJΓhv + M−1
o GKJSqZw.

From Γh ⊆ ker(GKJ), then

M−1
o GKGT Γucy = M−1

o GKJSqZw.

However, this is never verified. M−1
o GKJSqZ ⊆ ker(ΓT

uc) because of the choice of Z.

While it will be very easy to show that if M−1
o GKGT Γuc ⊆ ker(Γ

T

uc) then matrix
M−1

o GKGT would be an orthogonal projector. However, this is not true because
this is not a projector form.2 This shows that (17) is proven. �

Lemma 2.

rank
[

Γh SqZ
]

= rank(Γh) + rank(SqZ) = q − r − c.

P r o o f . The first equality comes from the null intersection between im(Γh) and
im(SqZ). In fact, from (25) im(Γh) is a subspace of maxI(M−1

h JTKJ, ker(GKJ))
which, from (26), is orthogonal to im(M−1

h Sq). The proof of the second equality of
the lemma begins with the following relation.

maxI(M−1
h JT KJ, ker(GKJ)) = im(M−1

h Sq)
⊥,

and it follows that

im(M−1
h JT ) ⊆ maxI(M−1

h JT KJ, ker(GKJ)) ⊕ im(M−1
h Sq).

Now, from (26) im(M−1
h Sq) ⊆ im(M−1

h JT ). From the above mentioned inclusion
and from definition (25) of Γh it follows that

im(M−1
h JT ) = M−1

h JT ∩
(

maxI(M−1
h JT KJ, ker(GKJ)) ⊕ im(M−1

h Sq)
)

=
(

M−1
h JT ∩ maxI(M−1

h JT KJ, ker(GKJ))
)

⊕ im(M−1
h Sq)

= im(Γh) ⊕ im(M−1
h Sq).

It follows that

rank(Γh) + rank(Sq) = rank(M−1
h JT ) = rank(J) = q − r

and
rank(Γh) = q − r − rank(Sq). (19)

1 In general for a linear application L the following relationship holds: im(LT ) + ker(L) = I.

2It is useful to recall that given a subspace L which the basis matrix is L then ker(LT ) =
(im(L))⊥ and the orthogonal projector is (I − L(LT

L)−1
L

T).
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It remains to calculate rank(SqZ). Recalling that Sq and Z are basis matrices and
from (24) rank(Z) ≤ rank(Sq), then

rank(SqZ) = rank(Z). (20)

From the definition of Z in (24 ) it follows that

rank(Z) = rank(Sq) − rank(Z⊥), (21)

where rank(Sq) is the number of components of z ∈ Z. The last part of this
demonstration consists of estimating rank(Z⊥), which from (24) is

rank(Z⊥) = rank(ST
q JT KGTM−1

o Γuc).

From (26), it is easy to show that ker(ST
q ) ⊆ ker(GKJ), and thus ker(ST

q ) ∩

im(JT KGT ) = 0 and

rank(Z⊥) = rank(JT KGT M−1
o Γuc). (22)

Now
rank(Z⊥) = rank(JT KGT M−1

o Γuc) = rank(Γuc) = c. (23)

If (22) is transposed, then

rank(Z⊥) = rank(ΓT
ucM

−1
o GKJ),

and from (5)

rank(Z⊥) = rank(ΓT
ucM

−1
o GKGT Γuc) = rank(Γuc),

where the last equality follows because matrix ΓT
ucM

−1
o GKGTΓuc has full rank.

Finally, from (20), (21) and (23), it can be concluded:

rank(SqZ) = rank(Sq) − c.

Now, if this last result with (19) is compared, it follows:

rank
[

Γh SqZ
]

= q − r − c.

�

Remark 3. Equation (16) is proven only if in case of kinematic defectivity
(ker(JT )) 6= 0), i. e., being J ∈ ℜ(t×q), thus only in case of t > q. It is easy to
prove that in case of t ≤ q only a trivial extension exists. Let r e c be the ranks
of matrices Γr and Γuc, respectively. Then, rank(J) = q − r. From Lemma 2, we
have that rank

[

Γh SqZ
]

= rank(Γh)+ rank(SqZ) = q− r− c. In conclusion, (16)
shows that

rank(Q) = q − r − c.

This is derived from (13). In fact, rank(Q) = rank(QT ) = q − rank(ker(Q)) =
q − (r + c).
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Notion of decoupling control of internal forces is formalized in the next definition.

Definition 7. Consider the dynamic system (2). A control law of internal forces
eti is decoupled with respect to the coordinate rigid–body motions euc, if there
exists a linear combination BτU of the input–matrix columns and an algebraic
output feedback L of the measured output ym. For zero initial condition, the input
τ = Uτn affects only the internal forces eti, while euc is equal to zero.

The following theorem shows that Definition 7 is considered as a structural prop-
erty of general (non–indeterminate) manipulation systems, and decoupling control
can be obtained through an algebraic feedback of the sensed output ym.

Theorem 1. Robust decoupling

Consider the linearized manipulation system (2), then there exists an algebraic
output feedback L of ym and a matrix U such that

a) the decoupling condition of Definition 7 holds and

b) im (Eti min I (A + BτLC,BτU)) = im(Eti), ∀ K and B.

P r o o f . Robust decoupling:

Reference [7] shows that to guarantee the existence of a decoupling-output feed-
back law, it is necessary that the trajectories lie in a subspace that must be controlled
and conditioned invariant. Let us choose an (A,Bτ )–controlled and conditioned can-
didate invariant subspace V⋆ as

V⋆ = im







Γh 0 0 0 SqZ 0

0 0 ker(ΓT
uc) 0 0 0

0 Γh 0 0 0 SqZ

0 0 0 ker(ΓT
uc) 0 0






,

where Z is such that

im(M−1
o GKJSqZ) = im(M−1

o GKJSq) ∩ ker(ΓT
uc). (24)

Γh is the identical internal force as explained in [14]

Γh : M−1
o JT ∩ maxI(M−1

h JT KJ, ker(GKJ)); (25)

and
Sq = minI(M−1

h JT KJ,M−1
h JTKGT ) (26)

and M−1
h is positive defined. The notation indicates matrices and column spaces as

well. The proof consists of showing the following:

1) V⋆ is a controlled and conditioned invariant subspace ∀ K and ∀ B (generalized
controlled and conditioned invariant subspace).

2) V⋆ ⊆ ker (Euc) ∀ K and ∀ B.
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3) Show that Proposition 3 and 4 hold for the presented case.

To prove point 1), it should be shown that AV⋆ ⊆ V⋆ ⊕Bτ ∀ K and ∀ B, where

A =









0 0 Iq 0

0 0 0 Iu

−M−1
h JT KJ M−1

h JT KGT −M−1
h JTBJ M−1

h JT BGT

M−1
o GKJ −M−1

o GKGT M−1
o GBJ −M−1

o GBGT









.

According to the physical hypothesis that ker(ΓT
uc) is GKGT invariant then,

AV⋆ ⊆ im









0 Γh 0 0 0 SqZ

0 0 0 ker(ΓT
uc) 0 0 0

• • • • • • •
0 0 0 0 ker(ΓT

uc) 0 0









.

Subspace V⋆ is a generalized-controlled invariant because of the following reasons:

• invoking (6) and remembering that Γuc is not dependent on K and B.

• Considering that ker(Γuc)
T is GKGT invariant and independent of parame-

ter K.

• Recalling the structure of Bτ .

Recalling (12), V⋆ is also a generalized-conditioned invariant in (A, ker (C)), which
is verified because

A (ker(C) ∩ V⋆) = Aim









0

ker(ΓT
uc)

0

−αker(ΓT
uc)









⊆ V⋆.

A (ker(C) ∩ V⋆) = im









0

−αker(ΓT
uc)

M−1
h JT KGT

ker(ΓT
uc) − M−1

h JT BGT
ker(ΓT

uc)

−M−1
o GKGT

ker(ΓT
uc)−M−1

o GBGT αker(ΓT
uc))









⊆ V⋆.

To show the last inclusion, it is enough to notice the following:

• Γuc is not dependent on K and B, see(6).

• Invoking that ker(ΓT
uc) is GKGT invariant and independent of parameter K.

• −M−1
o GKGT

ker(ΓT
uc)−M−1

o GBGT αker(ΓT
uc) = ker(ΓT

uc).

Point 2) is straightforward to prove. In fact, it is enough to notice that

ker(Euc) = im









Iq 0 0 0

0 ker(ΓT
uc) 0 0

0 0 Iq 0

0 0 0 Iu









.
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Point 3) could be shown through the following considerations. Proposition 3 is
straightforward to prove that in this case it holds. To prove that Proposition 4
holds in the present case, it is enough to prove that im(Eti) = im(Eti(V

⋆ ∩ imBτ ))
∀ K and ∀ B. The results of Lemma 1 and Lemma 2 were devoted to show that. �

A procedure for designing the robust-decoupling controller of internal forces for
a given manipulation system is reported in the sequel. The procedure is based on
propositions and remarks from this Section.

Procedure:

step 1 Compute V⋆.

step 2 If V⋆ 6= {0}, choose F and U according to Remark 1 and to Proposition 3. If
U 6= 0, Proposition 3 holds and claim a) of Definition 3 is satisfied. Otherwise,
the robust decoupling controller does not exist and the procedure ends.

step 3 Check the sufficient conditions of Proposition 2. If they are satisfied, then
stop.

step 4 Check the sufficient conditions of Proposition 4. If these are satisfied, then
stop.

step 5 If step 3 and 4 fail, check the necessary condition of Proposition 1.

step 6 If the necessary condition of Proposition 1 is satisfied, check condition b) of
Definition 3.

step 7 Calculation of matrix L:
according to step 1 until step 6. If there exists matrix F, then consider equation
(27) of definition (3) denoted by:

min I ((A(∆k, ∆b) + BτLC),BτU) ⊆ kerEuc, (27)

then

F = L

[

Eti

Euc

]

,

this yields
[

Eti

Euc

]T

LT = FT ,

and

im(FT ) ⊆ im

[

Eti

Euc

]T

,

finally

ker

[

Eti

Euc

]

⊆ ker(F).
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Fig. 2. Cross-section of manipulator.

Remark 4. Steps 1 and 2 refer to the decoupling property (claim a) of the robust
controller. Steps 3 to 6 check that F and U fulfill the reachability condition (claim b).

Note that if the procedure does not end at step 3 or 4, a different choice of the
state–feedback matrix F and of the input selection matrix may be needed to prove
the robustness of the proposed-control law.

5. AN APPLICATION EXAMPLE

In this section, numerical results are reported for the gripper described in Figure 2.
This system is a planar device with two degrees of freedom, a prismatic and a
rotoidal joint. Joint variables are positive when links move left. In the reference
frame, the contacts are c1 = (0, 2), c2 = (1, 2), and the object center of mass is
cb = (0.5, 2). As previously explained, J = H δcm

δq
and GT = H δco

δu
, the identity

matrix is assumed in the presented case matrix H. The inertia matrices of the
object and manipulator are assumed to be normalized to the identity matrix. The
contact behavior is assumed isotropic at the contacts. Given that q = [q1, q2]

T . In
general cm

1 = (2 cos q1, 2− 2sinq1), cm
2 = (2 cos q1 − q2, 2), the Jacobian matrix, and

its linearization around the point q1 = π
2 assume the following values:

J =







−2 sin q1 0
−2 cos q1 0
−2 sin q1 −1
−2 sin q1 0






;Jl =







−2 0
0 0
−2 −1
−2 0






.
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The grasp matrix was once assumed u = [x, y, θ]T to be the vector of the generalized
coordinates for the object. Then, the contact points could be represented as follows
co
1 = (x + cos θ, 1 + y + sin θ), co

2 = (1 + x − cos θ, 1 + y − sin θ). The grasp matrix
and its linearization around θ = 0 have the following form:

G =





1 0 1 0
0 1 0 1

sin θ − cos θ sin θ − cos θ



 ;Gl =





1 0 1 0
0 1 0 1
0 −1 0 −1



 .

If ker
[

J − GT
]

= im (Γ) is calculated, then it follows:

Γ =













0.0000
0.0000
0.0000
0.3780
0.3780













;

where

Γqc =

[

0.0000
0.0000

]

;Γuc =





0.0000
0.3780
0.3780



 .

Condition (6) is also satisfied. In fact, GTΓuc = 0. It is possible to calculate

ker (Γuc)
T = im





−1.0000 −0.0000
0.0000 −0.7071
0.0000 0.7071



 ;Sq =

[

0.9487 −0.3162
0.3162 0.9487

]

.

ker(GKJ) = 0. This yields that Γh = 0. In the analyzed case, im(M−1
o GKJSq) ⊆

ker (Γuc)
T , then Z = I. At the end it follows:

V⋆ = im













0 0 0 0 0.9487 −0.3162 0 0

0 0 0 0 0.3162 0.9487 0 0

−1.0000 −0.0000 0 0 0 0 0 0

0.0000 −0.7071 0 0 0 0 0 0

0.0000 0.7071 0 0 0 0 0 0

0 0 0 0 0 0 0.9487 −0.3162

0 0 0 0 0 0 0.3162 0.9487

0 0 −1.0000 −0.0000 0 0 0 0

0 0 0.0000 −0.7071 0 0 0 0

0 0 0.0000 0.7071 0 0 0 0













.

Figure 3 shows the proposed control scheme structure. From this scheme the
concept of the conditioned and controlled-invariant subspace as an algebraic feedback
is visible. In fact, considering the theorem shown above,

a) min I ((A(∆k, ∆b) + BτLC),BτU) ⊆ ker Euc;

b) imEti(∆k, ∆b) = Eti(∆k, ∆b) min I ((A(∆k, ∆b) + BτLC),BτU)
(28)

a robust decoupling controller is active through the matrix L. Equation (28) is in-
terpreted as, all the contact forces Eti, remain in the expression im(Eti) ∀ K and B.
This means that the contact forces do not influence the subspace of the movements.
From Figures 4, it is visible how the contact forces “compensate”. Essentially, no
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Fig. 3. Control Scheme.

movements are allowed, and the desired force on the object is obtained. The dynam-
ics of the forces, represented on the down (left and right) part of Figure 4 are due to
the particular choice of eigenvalues that characterise the force answer of the system.
The robustness, with respect to the variations of K and B, is widely explained in
the description of the proposed procedure. The robust decoupling controller exits
if some structural conditions are satisfied. These structural conditions are satisfied
by those mechanisms that present some symmetry in their geometric structure. In
fact, a symmetric structure always uses symmetric contact forces to guarantee the
existence of the compensation mentioned above.

6. CONCLUSIONS AND FUTURE WORK

In this paper, the dynamics of general mechanical systems for manipulation and
their structural properties and geometric control are considered. Attention has
been devoted to the control of internal forces by means of an algebraic feedback
of measured outputs. Moreover, a particular effort is devoted to show a robust
design analysis. The achieved robustness is limited to particular mechanisms that
present physical and geometric symmetric structures. Future work will be oriented
to developing such kinds of procedures for partial rank conditions inclusions. The
goal will be to develop a measure for robustness and to develop procedures not only
limited to an “on-off” robustness concept.

(Received September 28, 2009)
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