[1] Aranda-Bricaire, E., Moog, C. H., Pomet, J.-B.:
A linear algebraic framework for dynamic feedback linearization. IEEE Trans. Automat. Control 40 (1995), 127–132.
DOI 10.1109/9.362886 |
MR 1344331
[2] Bartosiewicz, Z.:
A new setting for polynomial continuous-time systems, and a realization theorem. IMA J. Math. Control Inform. Theory 2 (1985), 71–80.
DOI 10.1093/imamci/2.1.71 |
Zbl 0637.93013
[5] Choquet-Bruhat, Y., DeWitt-Morette, C., Dillard-Bleick, M.:
Analysis, Manifolds and Physics, Part I: Basics. Elsevier Science Publishers, Amsterdam 1981.
MR 0685274
[6] Conte, G., Moog, C. H., Perdon, A. M.: Nonlinear Control Systems. Lecture Notes in Control and Inform. Sci. 242, Springer, New York 1990.
[7] Conte, G., Perdon, A. M., Moog, C. H.:
The differential field associated to a general analytic nonlinear dynamical system. IEEE Trans. Automat. Control 38 (1993), 1120–1124.
DOI 10.1109/9.231468 |
MR 1235235 |
Zbl 0800.93539
[8] Cox, D. A., Little, J. B., O’Shea, D.: Ideals, varieties, and algorithms. Second edition. Springer, New York 1996.
[9] Crouch, P. E., Lamnabhi-Lagarrigue, F.:
State space realizations of nonlinear systems defined by input output differential equations. In: Analysis and Optimization Systems (A. Bensousan and J. L. Lions, eds.), Lecture Notes in Control and Inform. Sci. 111, 138–149.
MR 0956266 |
Zbl 0675.93031
[10] Crouch, P. E., Lamnabhi-Lagarrigue, F.:
Realizations of input output differential equations. In: Recent Advances in Mathematical Theory of Systems, Control, Networks and Signal Processing II Proceeding MTNS-91, Mita Press 1992.
MR 1198030
[12] Delaleau, E., Respondek, W.:
Lowering the orders of derivatives of controls in generalized state space systems. J. Math. Systems Estim. Control 5 (1995), 1–27.
MR 1651823 |
Zbl 0852.93016
[14] Diop, S.:
A state elimination procedure for nonlinear systems. In: New Trends in Nonlinear Control Theory, (J. Decusse, M. Fliess, A. Isidori,D. Leborgne, eds.), Lecture Notes in Control and Inform. Sci. 122 (1989), 190–198.
MR 1229776 |
Zbl 0696.93016
[15] Diop, S., Fliess, F.: Nonlinear observability, identification, and persistent trajectories. In: Proc. 30th CDC, Brighton 1991.
[17] Fliess, M.:
Some remarks on nonlinear invertibility and dynamic state feedback. In: Theory and Applications of Nonlinear Control Systems, also in: Proc. MTNS’85, (C. Byrnes and A. Lindquist, eds.), North Holland, Amsterdam 1986.
MR 0935371 |
Zbl 0601.93028
[19] Fliess, M.:
Automatique et corps différentiels. Forum Math. 1 (1986), 227–238.
MR 1005424
[21] Fliess, M., Kupka, I.:
Finiteness conditions for nonlinear input output differential systems. SIAM J. Control Optim. 21 (1983), 721–728.
DOI 10.1137/0321044 |
MR 0710997
[22] Glad, S. T.:
Nonlinear state space and input output descriptions using differential polynomials. In: New Trends in Nonlinear Control Theory, (J. Decusse, M. Fliess, A. Isidori and D. Leborgne, eds.), Lecture Notes in Control and Inform. Sci. 122 (1989), 182–189.
MR 1229775 |
Zbl 0682.93030
[23] Halas, M., Huba, M.: Symbolic computation for nonlinear systems using quotients over skew polynomial ring. In: 14th Mediterranean Conference on Control and Automation, Ancona 2006.
[28] Isidori, A., D’Alessandro, P., Ruberti, A.:
Realization and structure theory of bilinear dynamical systems. SIAM J. Control 13 (1974), 517–535.
MR 0424307
[31] Jakubczyk, B.:
Construction of formal and analytic realizations of nonlinear systems. In: Feedback Control of Linear and Nonlinear Systems. Lecture Notes in Control and Inform. Sci. 39, Springer 1982.
MR 0837456 |
Zbl 0519.93022
[32] Jakubczyk, B.:
Realization theory for nonlinear systems, three approaches. In: Alg. & Geom. Methods in Nonlin. Control. Theory. Springer 1986.
MR 0862316 |
Zbl 0608.93018
[34] Kolchin, E. R.:
Differential Algebra and Algebraic Groups. Academic Press, New York 1973.
MR 0568864 |
Zbl 0264.12102
[35] Kobayashi, S., Nomizu, K.:
Foundations of Differential Geometry. Volume I. John Willey & Sons, New York 1963.
MR 1393940 |
Zbl 0119.37502
[36] Kotta, U., Kotta, P., Nomm, S., Tonso, M.: Irreducibility conditions for continuous-time multi-input multi-output nonlinear systems. In: Proc. 9th International Conference on Control, Automation, Robotics and Vision (ICARCV 2006). Singapore 2006.
[39] Krener, A. J., Respondek, W.:
Nonlinear observers with linearizable error dynamics. SIAM J. Control Optim. 23 (1985), 197–216.
MR 0777456 |
Zbl 0569.93035
[40] Moog, C. H., Zheng, Y. F., Liu, P.: Input-output equivalence of nonlinear systems and their realizations. In: 15th IFAC World Congress on Automatic Control, IFAC, Barcelona 2002.
[41] Nijmeijer, H., Schaft, A. van der:
Nonlinear Dynamical Control Systems. Springer, New York 1990.
MR 1047663
[43] Ore, O.:
Theory of non-commutative polynomials. Ann. Math. 34 (1933), 80–508.
Zbl 0007.15101
[45] Rudolph, J.:
Viewing input-output system equivalence from differential algebra. J. Math. Systems Estim. Control 4 (1994), 353–383.
MR 1298841 |
Zbl 0806.93012
[46] Schaft, A. J. van der:
Observability and controllability for smooth nonlinear systems. SIAM J. Control Optim. 20 (1982), 338–354.
DOI 10.1137/0320026 |
MR 0652211
[47] Schaft, A. J. van der:
On realization of nonlinear systems described by higher-order differential equations. Math. Systems Theory 19 (1987), 239–275.
DOI 10.1007/BF01704916 |
MR 0871787
[48] Schaft, A. J. van der:
Transformations of nonlinear systems under external equivalence. In: New Trends in Nonlinear Control Theory, Lecture Notes in Control and Information Sciences 122, Springer, New York 1989, pp. 33–43.
MR 1229763
[49] Schaft, A. J. van der:
Representing a nonlinear state space system as a set of higher-order differential equations in the inputs and outputs. Syst. Control Lett. 12 (1989), 151–160.
DOI 10.1016/0167-6911(89)90008-X |
MR 0985565
[51] Sussmann, H. S.:
Existence and uniqueness of minimal realizations of nonlinear systems. Math. Systems Theory 10 (1977), 263–284.
DOI 10.1007/BF01683278 |
MR 0437158
[55] Xia, X., Márquez, L. A., Zagalak, P., Moog, C. H.:
Analysis of nonlinear time-delay systems using modules over non-commutative rings. Automatica 38 (2002), 1549–1555.
DOI 10.1016/S0005-1098(02)00051-1 |
MR 2134034
[56] Zheng, Y., Cao, L.:
Transfer function description for nonlinear systems. J. East China Normal University (Natural Science) 2 (1995), 5–26.
MR 1370603