Previous |  Up |  Next

Article

Keywords:
realization; nonlinear system; differential ideal; differential form
Summary:
In this paper differential forms and differential algebra are applied to give a new definition of realization for multivariable nonlinear systems consistent with the linear realization theory. Criteria for the existence of realization and the definition of minimal realization are presented. The relations of minimal realization and accessibility and finally the computation of realizations are also discussed in this paper.
References:
[1] Aranda-Bricaire, E., Moog, C. H., Pomet, J.-B.: A linear algebraic framework for dynamic feedback linearization. IEEE Trans. Automat. Control 40 (1995), 127–132. DOI 10.1109/9.362886 | MR 1344331
[2] Bartosiewicz, Z.: A new setting for polynomial continuous-time systems, and a realization theorem. IMA J. Math. Control Inform. Theory 2 (1985), 71–80. DOI 10.1093/imamci/2.1.71 | Zbl 0637.93013
[3] Callier, F. M., Desoer, C. A.: Linear System Theory. Springer, New York 1991. MR 1123479 | Zbl 0744.93002
[4] Celle, F., Gauthier, J. P.: Realizations of nonlinear analytic input-output maps. Math. Systems Theory 19 (1987), 227–237. DOI 10.1007/BF01704915 | MR 0871786 | Zbl 0638.93016
[5] Choquet-Bruhat, Y., DeWitt-Morette, C., Dillard-Bleick, M.: Analysis, Manifolds and Physics, Part I: Basics. Elsevier Science Publishers, Amsterdam 1981. MR 0685274
[6] Conte, G., Moog, C. H., Perdon, A. M.: Nonlinear Control Systems. Lecture Notes in Control and Inform. Sci. 242, Springer, New York 1990.
[7] Conte, G., Perdon, A. M., Moog, C. H.: The differential field associated to a general analytic nonlinear dynamical system. IEEE Trans. Automat. Control 38 (1993), 1120–1124. DOI 10.1109/9.231468 | MR 1235235 | Zbl 0800.93539
[8] Cox, D. A., Little, J. B., O’Shea, D.: Ideals, varieties, and algorithms. Second edition. Springer, New York 1996.
[9] Crouch, P. E., Lamnabhi-Lagarrigue, F.: State space realizations of nonlinear systems defined by input output differential equations. In: Analysis and Optimization Systems (A. Bensousan and J. L. Lions, eds.), Lecture Notes in Control and Inform. Sci. 111, 138–149. MR 0956266 | Zbl 0675.93031
[10] Crouch, P. E., Lamnabhi-Lagarrigue, F.: Realizations of input output differential equations. In: Recent Advances in Mathematical Theory of Systems, Control, Networks and Signal Processing II Proceeding MTNS-91, Mita Press 1992. MR 1198030
[11] Crouch, P. E., Lamnabhi-Lagarrigue, F., Pinchon, D.: A realization algorithm for input output systems. Internat. J. Control 62 (1995), 941–960. DOI 10.1080/00207179508921576 | MR 1632926
[12] Delaleau, E., Respondek, W.: Lowering the orders of derivatives of controls in generalized state space systems. J. Math. Systems Estim. Control 5 (1995), 1–27. MR 1651823 | Zbl 0852.93016
[13] Benedetto, M. C. Di, Grizzle, J., Moog, C. H.: Rank invariants of nonlinear systems. SIAM J. Control Optim. 27 (1989), 658–672. DOI 10.1137/0327035 | MR 0993292 | Zbl 0696.93033
[14] Diop, S.: A state elimination procedure for nonlinear systems. In: New Trends in Nonlinear Control Theory, (J. Decusse, M. Fliess, A. Isidori,D. Leborgne, eds.), Lecture Notes in Control and Inform. Sci. 122 (1989), 190–198. MR 1229776 | Zbl 0696.93016
[15] Diop, S., Fliess, F.: Nonlinear observability, identification, and persistent trajectories. In: Proc. 30th CDC, Brighton 1991.
[16] Fliess, M.: Realizations of nonlinear systems and abstract transitive Lie algebras. Bull. Amer. Math. Soc. (N. S.) 2 (1980), 444–446. DOI 10.1090/S0273-0979-1980-14760-6 | MR 0561529 | Zbl 0427.93011
[17] Fliess, M.: Some remarks on nonlinear invertibility and dynamic state feedback. In: Theory and Applications of Nonlinear Control Systems, also in: Proc. MTNS’85, (C. Byrnes and A. Lindquist, eds.), North Holland, Amsterdam 1986. MR 0935371 | Zbl 0601.93028
[18] Fliess, M.: A note on the invertibility of nonlinear input output systems. Syst. Control Lett. 8 (1986), 147–151. DOI 10.1016/0167-6911(86)90073-3 | MR 0870352
[19] Fliess, M.: Automatique et corps différentiels. Forum Math. 1 (1986), 227–238. MR 1005424
[20] Fliess, M.: Generalized controller canonical forms for linear and nonlinear dynamics. IEEE Trans. Autom. Control 35 (1990), 994–1001. DOI 10.1109/9.58527 | MR 1065035 | Zbl 0724.93010
[21] Fliess, M., Kupka, I.: Finiteness conditions for nonlinear input output differential systems. SIAM J. Control Optim. 21 (1983), 721–728. DOI 10.1137/0321044 | MR 0710997
[22] Glad, S. T.: Nonlinear state space and input output descriptions using differential polynomials. In: New Trends in Nonlinear Control Theory, (J. Decusse, M. Fliess, A. Isidori and D. Leborgne, eds.), Lecture Notes in Control and Inform. Sci. 122 (1989), 182–189. MR 1229775 | Zbl 0682.93030
[23] Halas, M., Huba, M.: Symbolic computation for nonlinear systems using quotients over skew polynomial ring. In: 14th Mediterranean Conference on Control and Automation, Ancona 2006.
[24] Halas, M.: An algebraic framework generalizing the concept of transfer functions to nonlinear systems. Automatica 44 (2008), 1181–1190. DOI 10.1016/j.automatica.2007.09.008 | MR 2531783
[25] Hartshorne, R.: Algebraic Geometry. Springer, New York 1977. MR 0463157 | Zbl 0367.14001
[26] Hermann, R., Krener, A. J.: Nonlinear controllability and observability. IEEE Trans. Automat. Control 22 (1977), 728–740. DOI 10.1109/TAC.1977.1101601 | MR 0476017 | Zbl 0396.93015
[27] Isidori, A.: Nonlinear Control Systems. Third edition. Springer, New York 1995. MR 1410988 | Zbl 0878.93001
[28] Isidori, A., D’Alessandro, P., Ruberti, A.: Realization and structure theory of bilinear dynamical systems. SIAM J. Control 13 (1974), 517–535. MR 0424307
[29] Jacobson, N.: Basic Algebra I. W. H. Freeman and Company, San Francisco 1974. MR 0356989 | Zbl 0284.16001
[30] Jakubczyk, B.: Existence and uniqueness of realizations of nonlinear systems. SIAM J. Control Optim. 18 (1980), 455–471. DOI 10.1137/0318034 | MR 0579553 | Zbl 0447.93012
[31] Jakubczyk, B.: Construction of formal and analytic realizations of nonlinear systems. In: Feedback Control of Linear and Nonlinear Systems. Lecture Notes in Control and Inform. Sci. 39, Springer 1982. MR 0837456 | Zbl 0519.93022
[32] Jakubczyk, B.: Realization theory for nonlinear systems, three approaches. In: Alg. & Geom. Methods in Nonlin. Control. Theory. Springer 1986. MR 0862316 | Zbl 0608.93018
[33] Kaplansky, I.: An Introduction to Differential Algebra. Hermann, Paris 1957. MR 0093654 | Zbl 0083.03301
[34] Kolchin, E. R.: Differential Algebra and Algebraic Groups. Academic Press, New York 1973. MR 0568864 | Zbl 0264.12102
[35] Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry. Volume I. John Willey & Sons, New York 1963. MR 1393940 | Zbl 0119.37502
[36] Kotta, U., Kotta, P., Nomm, S., Tonso, M.: Irreducibility conditions for continuous-time multi-input multi-output nonlinear systems. In: Proc. 9th International Conference on Control, Automation, Robotics and Vision (ICARCV 2006). Singapore 2006.
[37] Kotta, U., Zinober, A. S. I., Liu, P.: Transfer equivalence and realization of nonlinear higher order input output difference equations. Automatica 37 (2001), 1771–1778. DOI 10.1016/S0005-1098(01)00144-3 | Zbl 1009.93048
[38] Kou, S. R., Elliot, D. L., Tarn, T. J.: Observability of nonlinear systems. Inform. Control 22 (1973), 89–99. DOI 10.1016/S0019-9958(73)90508-1 | MR 0325192
[39] Krener, A. J., Respondek, W.: Nonlinear observers with linearizable error dynamics. SIAM J. Control Optim. 23 (1985), 197–216. MR 0777456 | Zbl 0569.93035
[40] Moog, C. H., Zheng, Y. F., Liu, P.: Input-output equivalence of nonlinear systems and their realizations. In: 15th IFAC World Congress on Automatic Control, IFAC, Barcelona 2002.
[41] Nijmeijer, H., Schaft, A. van der: Nonlinear Dynamical Control Systems. Springer, New York 1990. MR 1047663
[42] Ore, O.: Linear equations in non-commutative fields. Ann. Math. 32 (1931), 463–477. DOI 10.2307/1968245 | MR 1503010 | Zbl 0001.26601
[43] Ore, O.: Theory of non-commutative polynomials. Ann. Math. 34 (1933), 80–508. Zbl 0007.15101
[44] Ritt, J. F.: Differential Algebra. American Mathematical Society, Providence 1950. MR 0035763 | Zbl 0037.18402
[45] Rudolph, J.: Viewing input-output system equivalence from differential algebra. J. Math. Systems Estim. Control 4 (1994), 353–383. MR 1298841 | Zbl 0806.93012
[46] Schaft, A. J. van der: Observability and controllability for smooth nonlinear systems. SIAM J. Control Optim. 20 (1982), 338–354. DOI 10.1137/0320026 | MR 0652211
[47] Schaft, A. J. van der: On realization of nonlinear systems described by higher-order differential equations. Math. Systems Theory 19 (1987), 239–275. DOI 10.1007/BF01704916 | MR 0871787
[48] Schaft, A. J. van der: Transformations of nonlinear systems under external equivalence. In: New Trends in Nonlinear Control Theory, Lecture Notes in Control and Information Sciences 122, Springer, New York 1989, pp. 33–43. MR 1229763
[49] Schaft, A. J. van der: Representing a nonlinear state space system as a set of higher-order differential equations in the inputs and outputs. Syst. Control Lett. 12 (1989), 151–160. DOI 10.1016/0167-6911(89)90008-X | MR 0985565
[50] Sontag, E. D.: Bilinear realizability is equivalent to existence of a singular affine differential i/o equation. Syst. Control Lett. 11 (1988), 190–198. DOI 10.1016/0167-6911(88)90057-6 | MR 0960665 | Zbl 0657.93010
[51] Sussmann, H. S.: Existence and uniqueness of minimal realizations of nonlinear systems. Math. Systems Theory 10 (1977), 263–284. DOI 10.1007/BF01683278 | MR 0437158
[52] Wang, Y., Sontag, E. D.: Algebraic differential equations and rational control systems. SIAM J. Control Optim. 30 (1992), 1126–1149. DOI 10.1137/0330060 | MR 1178655 | Zbl 0762.93015
[53] Wang, Y., Sontag, E. D.: Generating series and nonlinear systems: analytic aspects, local realizability and i/o representations. Forum Math. 4 (1992), 299–322. DOI 10.1515/form.1992.4.299 | MR 1164098 | Zbl 0746.93020
[54] Wang, Y., Sontag, E. D.: Orders of input/output differential equations and state-space dimensions. SIAM J. Control Optim. 33 (1995), 1102–1126. DOI 10.1137/S0363012993246828 | MR 1339057 | Zbl 0830.93015
[55] Xia, X., Márquez, L. A., Zagalak, P., Moog, C. H.: Analysis of nonlinear time-delay systems using modules over non-commutative rings. Automatica 38 (2002), 1549–1555. DOI 10.1016/S0005-1098(02)00051-1 | MR 2134034
[56] Zheng, Y., Cao, L.: Transfer function description for nonlinear systems. J. East China Normal University (Natural Science) 2 (1995), 5–26. MR 1370603
Partner of
EuDML logo