Previous |  Up |  Next

Article

Keywords:
disturbance rejection; nonharmonic periodic disturbances; global stability; Van der Pol circuit; vibration control
Summary:
This paper proposes an asymptotic rejection algorithm on the rejection of nonharmonic periodic disturbances for general nonlinear systems. The disturbances, which are produced by nonlinear exosystems, are nonharmonic and periodic. A new nonlinear internal model is proposed to deal with the disturbances. Further, a state feedback controller is designed to ensure that the system's state variables can asymptotically converge to zero, and the disturbances can be completely rejected. The proposed algorithm can be used in many applications, e. g. active vibration control, and the avoidance of nonharmonic distortion in nonlinear circuits. An example is shown that the proposed algorithm can completely reject the nonharmonic periodic disturbances generated from a Van der Pol circuit.
References:
[1] Arcak, M., Kokotovic, P.: Nonlinear observers: A circle criteria design and robustness analysis. Automatica 37 (2001), 1923–1930. DOI 10.1016/S0005-1098(01)00160-1 | MR 2110678
[2] Benedetto, M. D. Di: Synthesis of an internal model for nonlinear output regulation. Internat. J. Control 45 (1987), 1023–1034. DOI 10.1080/00207178708933784 | MR 0880281
[3] Bodson, M., Douglas, S. C.: Adaptive algorithms for the rejection of sinusoidal disturbances with unknown frequencies. Automatica 33 (1997), 2213–2221. DOI 10.1016/S0005-1098(97)00149-0 | MR 1604113
[4] Byrnes, C. I., Isidori, A.: Nonlinear internal model for output regulation. IEEE Trans. Automat. Control 49 (2004), 2244–2247. DOI 10.1109/TAC.2004.838492 | MR 2106753
[5] Chen, C., Ding, Z., Lennox, B.: Rejection of nonharmonic disturbances in nonlinear systems with semi-global stability. IEEE Trans. Circuits. Syst. II: Expr. Briefs 55 (2008), 1289–1293. DOI 10.1109/TCSII.2008.2009962
[6] Chen, Z., Huang, J.: Robust output regulation with nonlinear exosystems. Automatica 41 (2005), 1447–1454. DOI 10.1016/j.automatica.2005.03.015 | MR 2160490 | Zbl 1086.93013
[7] Davison, E. J.: The robust control of a servomechanism problem for linear time-invariant multivariable systems. IEEE Trans. Automat. Control 21 (1976), 25–34. DOI 10.1109/TAC.1976.1101137 | MR 0406616 | Zbl 0326.93007
[8] Desoer, C. A., Lin, C. A.: Tracking and disturbance rejection of MIMO nonlinear systems with PI controller. IEEE Trans. Automat. Control 30 (1985), 861–867. DOI 10.1109/TAC.1985.1104078 | MR 0799479 | Zbl 0573.93027
[9] Ding, Z.: Global output regulation of uncertain nonlinear systems with exogenous signals. Automatica 37 (2001),113–119. MR 1832885 | Zbl 0964.93057
[10] Ding, Z.: Output regulation of uncertain nonlinear systems with nonlinear exosystems. IEEE Trans. Automat. Control 51 (2006), 498–503. DOI 10.1109/TAC.2005.864199 | MR 2205690
[11] Ding, Z.: Asymptotic rejection of unknown sinusoidal disturbances in nonlinear systems. Automatica 43 (2007), 174–177. DOI 10.1016/j.automatica.2006.08.006 | MR 2266785
[12] Ding, Z.: Decentralized output regulation of large scale nonlinear systems with delay. Kybernetika 45 (2009), 33–48. MR 2489579 | Zbl 1158.93303
[13] Feng, G., Zhang, T.: Output regulation of discrete-time piecewise-liner systems with application to controlling chaos. IEEE Trans. Circuits. Syst. II: Expr. Briefs 53 (2006), 249–253. DOI 10.1109/TCSII.2005.862178
[14] Francis, D. A., Wonham, W. M.: The internal model principle for linear multivariable regulators. Appl. Math. Optim. 2 (1975), 170–194. DOI 10.1007/BF01447855 | MR 0389331 | Zbl 0351.93015
[15] Hu, T., Teel, A. R.: Characterization of forced vibration for difference inclusions: A Lyapunov approach. IEEE Trans. Circuits. Syst. I: Reg. Paper 54 (2007), 1367–1379. DOI 10.1109/TCSI.2007.895530 | MR 2370594
[16] Huang, J.: Asymptotic tracking and disturbance rejection in uncertain nonlinear systems. IEEE Trans. Automat. Control 40 (1995), 1118–1122. DOI 10.1109/9.388697 | MR 1345975 | Zbl 0829.93027
[17] Huang, J.: Nonlinear Output Regulation: Theroy and Application. SIAM, Philadelphia 2004. MR 2308004
[18] Huang, J., Chen, Z.: A general framework for tackling the output regulation problem. IEEE Trans. Automat. Control 49 (2004), 2203–2218. DOI 10.1109/TAC.2004.839236 | MR 2106750
[19] Huang, J., Lin, C-F.: On a robust nonlinear servomechanism problem. IEEE Trans. Automat. Control 39 (1994), 1510–1513. DOI 10.1109/9.299646 | MR 1283933 | Zbl 0800.93290
[20] Huang, J., Rugh, W. J.: On a nonlinear multivariable servomechanism problem. Automatica 26 (1990), 963–972. DOI 10.1016/0005-1098(90)90081-R | MR 1080983 | Zbl 0717.93019
[21] Isidori, A.: Nonlinear Control Systems. Third edition. Springer, Berlin 1995. MR 1410988 | Zbl 0878.93001
[22] Isidori, A., Byrnes, C. I.: Output regulation of nonlinear systems. IEEE Trans. Automat. Control 35 (1990), 131–140. DOI 10.1109/9.45168 | MR 1038409 | Zbl 0704.93034
[23] Jiang, Y., Liu, S.: Rejection of nonharmonic disturbances in a class of nonlinear systems with nonlinear exosystems. Asian J. Control. Submitted for publication.
[24] Johnson, C. D.: Accommodation of external disturbances in linear regulator and servomechanism problems. IEEE Trans. Automat. Control 16 (1971), 635–644. DOI 10.1109/TAC.1971.1099830
[25] Khalil, H. K.: Nonlinear Systems. Third edition. Prentice-Hall, NJ 2002. Zbl 1003.34002
[26] Liu, L., Chen, Z., Huang, J.: Parameter convergence and minimal internal model with an adaptive output regulation problem. Automatica 45 (2009), 1206–1311. MR 2531610 | Zbl 1162.93363
[27] Marino, R., Santosuosso, G. L., Tomei, P.: Robust adaptive compensation of biased sinusoidal disturbances with unknown frequencies. Automatica 39 (2003), 1755–1761. DOI 10.1016/S0005-1098(03)00170-5 | MR 2142091
[28] Priscoli, F. D.: Output regulation with nonlinear internal models. Systems Control Lett. 53 (2004), 177–185. DOI 10.1016/j.sysconle.2004.04.003 | MR 2092508 | Zbl 1157.93412
[29] Ramos, L. E., C̆elikovský, S., Kuc̆era, V.: Generalized output regulation problem for a class of nonlinear systems with nonautonomous exosystem. IEEE Trans. Automat. Control 49 (2004), 1737–1742. DOI 10.1109/TAC.2004.835404 | MR 2091325
[30] Rehák, B., Čelikovský, S., Ruiz-León, J., Orozco-Mora, J.: A comparison of two fem-based methods for the solution of the nonlinear output regulation problem. Kybernetika 45 (2009), 427–444. MR 2543132 | Zbl 1165.93320
[31] Serrani, A., Isidori, A.: Global robust output regulation for a class of nonlinear systems. Systems Control Lett. 39 (2000), 133–139. DOI 10.1016/S0167-6911(99)00099-7 | MR 1826676 | Zbl 0948.93027
[32] Serrani, A., Isidori, A., Marconi, L.: Semiglobal nonlinear output regulation with adaptive internal model. IEEE Trans. Automat. Control 46 (2001), 1178–1194. DOI 10.1109/9.940923 | MR 1847323 | Zbl 1057.93053
[33] Sun, W., Huang, J.: Output regulation for a class of uncertain nonlinear systems with nonlinear exosystems and its application. Science in China, Ser. F: Information Sciences. 52 (2009), 2172–2179. MR 2566641 | Zbl 1182.93072
[34] Xi, Z., Ding, Z.: Global adaptive output regulation of a class of nonlinear systems with nonlinear exosystems. Automatica 43 (2007), 143–149. DOI 10.1016/j.automatica.2006.08.011 | MR 2266780 | Zbl 1140.93462
[35] Ye, X., Huang, J.: Decentralized adaptive output regulation for a class of large-scale nonlinear systems. IEEE Trans. Automat. Control 48 (2003), 276–281. DOI 10.1109/TAC.2002.808480 | MR 1957326
Partner of
EuDML logo