Previous |  Up |  Next

Article

MSC: 11D61, 11R18, 11Y50
References:
[1] Bilu, Yu.: Catalan’ conjecture (after Mihăilescu). Sém. Bourbaki, 55 ème année, 909, 2002/03, 24 s.
[2] Bugeaud, Y., Hanrot, G.: Un noveau critère pour l’équation de Catalan. Mathematika 47 (2000), 63–73. MR 1924488
[3] Cassels, J. W. S.: On the equation $a^x-b^y=1$, II. Proc. Cambridge Philos. Soc. 56 (1960), 97–103. MR 0114791
[4] Inkeri, K.: On Catalan’s problem. Acta Arith. 9 (1964), 285–290. MR 0168518 | Zbl 0127.27102
[5] Inkeri, K.: On Catalan’s conjecture. J. Number Theory 34 (1990), 142–152. MR 1042488 | Zbl 0699.10029
[6] Ko Chao: On the diophantine equation ${x^2=y^n+1}$, ${xy\ne 0}$. Sci. Sinica 14 (1965), 457–460. MR 0183684
[7] Langevin, M.: Quelques applications de nouveaux résultats de van der Poorten. Sém. Delange-Pisot-Poitou, 1977/78, Paris, Exp. 4, 7 s. MR 0498426 | Zbl 0354.10008
[8] Lebesgue, V. A.: Sur l’impossibilité en nombres entiers de l’équation ${x^m=y^2+1}$. Nouv. Ann. Math. 9 (1850), 178–181.
[9] Metsänkylä, T.: Catalan’s conjecture: another old Diophantine problem solved. Bull. Amer. Math. Soc. (N. S.) 41 (2004), 43–57. MR 2015449
[10] Mignotte, M.: A criterion on Catalan equation. J. Number Theory 52 (1995), 280–284. MR 1336750
[11] Mignotte, M.: Catalan’s equation just before 2000. Number theory (Turku, 1999), 247–254, de Gruyter, Berlin 2001. MR 1822013
[12] Mihăilescu, P.: A class number free criterion for Catalan’s conjecture. J. Number Theory 99 (2003), 225–231.
[13] Mihăilescu, P.: Primary cyclotomic units and a proof of Catalan’s conjecture. J. Reine Angew. Math. 572 (2004), 167–195. MR 2076124
[14] Ribenboim, P.: Catalan’s conjecture. Academic Press, Boston 1994. MR 1259738 | Zbl 0824.11010
[15] Schwarz, W.: A note on Catalan equation. Acta Arith. 72 (1995), 277–279. MR 1347490
[16] Tijdeman, R.: On the equation of Catalan. Acta Arith. 29 (1976), 197–209. MR 0404137
Partner of
EuDML logo