Previous |  Up |  Next

Article

References:
[1] Adams, D. R.: Choquet integrals in potential theory. Publ. Mat. (1) 42 (1998), 3–66. MR 1628134 | Zbl 0923.31006
[2] Adams, D. R., Hedberg, L. I.: Function spaces and potential theory. SpringerV̄erlag, Berlin 1999. MR 1411441
[3] Aikawa, H., Essén, M.: Potential Theory — selected topics. Lecture Notes in Math. 1633, SpringerV̄erlag, Berlin 1996. MR 1439503
[4] Anger, B.: Approximation of capacities by measures. In: Lecture Notes in Math. 226, Springer-Verlag, Berlin 1971, 152–170. MR 0396885
[5] Anger, B.: Representation of capacities. Math. Ann. 229 (1977), 245–258. MR 0466588 | Zbl 0339.31010
[6] Armitage, D. H., Gardiner, S. J.: Classical potential theory. Springer-Verlag, London 2001. MR 1801253 | Zbl 0972.31001
[7] Arsove, M. G.: The Wiener-Dirichlet problem and the theorem of Evans. Math. Z. 103 (1968), 184–194. MR 0220957 | Zbl 0168.09503
[8] Bliedtner, J., Hansen, W.: Potential theory — An analytic and probabilistic approach to balayage. Springer-Verlag, Berlin 1986. MR 0850715 | Zbl 0706.31001
[9] Carleson, L.: Lectures on exceptional sets. Van Nostrand, Princeton 1967. MR 0225986
[10] Dellacherie, C.: Capacités, rabotages et ensembles analytiques. Séminaire Choquet, G., Rogalski, M., Saint-Raymond, J., 19e année, Initiation à l’Analyse, Publ. Math. Univ. Pierre et Marie Curie 41, Univ. Paris VI, Paris 1980. MR 0670775 | Zbl 0504.28002
[11] Dellacherie, C., Meyer, P.-A.: Probabilités et potentiel. Chapitres I à IV, Hermann, Paris 1975. MR 0488194 | Zbl 0323.60039
[12] Denneberg, D.: Non-additive measure and integral. Kluwer Academic Publishers Group, Dordrecht 1994. MR 1320048 | Zbl 0826.28002
[13] Doob, J. L.: Classical potential theory and its probabilistic counterpart. SpringerV̄erlag, New York 1984. MR 0731258 | Zbl 0549.31001
[14] Fan, S. C.: Integration with respect to an upper measure function. Amer. J. Math. 63 (1941), 319–338. MR 0003703 | Zbl 0025.03401
[15] Fuglede, B.: Capacity as a sublinear functional generalizing an integral. Danske Vid. Selsk. Mat.-Fys. Medd. (7) 38 (1971). MR 0291488 | Zbl 0222.31002
[16] Helms, L. L.: Introduction to potential theory. Wiley-Interscience, New York – London –– Sydney 1969. MR 0261018 | Zbl 0188.17203
[17] Choquet, G.: Theory of capacities. Ann. Inst. Fourier (Grenoble) 5 (1953/54), 131–295. MR 0080760
[18] Choquet, G.: Lectures on analysis I–III. W. A. Benjamin, Inc., New York–Amsterdam 1969.
[19] Choquet, G.: Vznik teorie kapacit: zamyšlení nad vlastní zkušeností. Pokroky Mat. Fyz. Astronom. 34 (1989), 71–83.
[20] König, H.: Measure and integration. An advanced course in basic procedures and applications. Springer-Verlag, Berlin 1997. MR 1633615
[21] Král, J., Netuka, I., Veselý, J.: Teorie potenciálu II., III., IV. SPN, Praha 1972, 1976, 1977.
[22] Kuratowski, K.: Topology I. Academic Press, New York 1966. MR 0217751
[23] Lorentz, G. G.: Who discovered analytic sets?. Math. Inteligencer (4) 23 (2001), 28–32. MR 1858643
[24] Lukeš, J.: Lebesgueův integrál. Časopis Pěst. Mat. (4) 91 (1966), 371–383.
[25] Lukeš, J., Malý, J.: Measure and integral. Matfyzpress, Praha 1995.
[26] Lukeš, J., Malý, J., Zajíček, L.: Fine topology methods in real analysis and potential theory. Lecture Notes in Math. 1189, Springer-Verlag, Berlin – New York 1986.
[27] Meyer, P.-A.: Probabilités et potentiel. Hermann, Paris 1966. MR 0205287 | Zbl 0138.10402
[28] Port, S. C., Stone, C. J.: Brownian motion and classical potential theory. Academic Press, New York 1978. MR 0492329 | Zbl 0413.60067
[29] Rao, M. M.: Measure theory and integration. Wiley-Interscience, New York 1987. MR 0891879 | Zbl 0619.28001
[30] Sedlák, B., Štoll, I.: Elektřina a magnetismus. Academia, Praha 2002.
[31] Wermer, J.: Potential theory. Lecture Notes in Math. 408, Springer-Verlag, Berlin 1974. MR 0454033 | Zbl 0297.31001
[32] Wiener, N.: Certain notions in potential theory. J. Math. Phys. M. I. T. 3 (1924), 24–51.
Partner of
EuDML logo