Previous |  Up |  Next

Article

Keywords:
sub-Markovian semigroup; potential; Bochner subordination; exit law; $\mathcal{C}^{1}$-subordinator; one-sided stable subordinator
Summary:
We study the integral representation of potentials by exit laws in the framework of sub-Markovian semigroups of bounded operators acting on $L^2(m)$. We mainly investigate subordinated semigroups in the Bochner sense by means of $\mathcal{C}^{1}$-subordinators. By considering the one-sided stable subordinators, we deduce an integral representation for the original semigroup.
References:
[1] Bachar I.: On exit laws for semigroups in weak duality. Comment. Math. Univ. Carolin. 42 (2001), no. 4, 711–719. MR 1883379 | Zbl 1090.31501
[2] Berg C., Forst G.: Potential Theory on Locally Compact Abelian Groups. Springer, Berlin-Heidelberg-New York, 1975. MR 0481057 | Zbl 0308.31001
[3] Bliedtner J., Hansen W.: Potential Theory. An Analytic and Probabilistic Approach to Balayage. Universitext, Springer, Berlin-Heidelberg-New York, 1986. MR 0850715 | Zbl 0706.31001
[4] Carasso J., Kato T.: On subordinated holomorphic semigroups. Trans. Amer. Math. Soc. 327 (1991), 867–878. DOI 10.1090/S0002-9947-1991-1018572-4 | MR 1018572 | Zbl 0743.47017
[5] Dellacherie C., Meyer P.A.: Probabilités et potentiel. Chapter XII-XVI, Hermann, Paris, 1987. MR 0488194 | Zbl 0624.60084
[6] Dynkin E.B.: Green's and Dirichlet spaces associated with fine Markov process. J. Funct. Anal. 47 (1982), 381–418. DOI 10.1016/0022-1236(82)90112-4 | MR 0665023
[7] Fitzsimmons P.J., Getoor R.K.: On the potential theory of symmetric Markov processes. Math. Ann. 281 (1988), 495–512. DOI 10.1007/BF01457159 | MR 0954155 | Zbl 0627.60067
[8] Fitzsimmons P.J.: Markov processes and nonsymmetric Markov processes without regularity. J. Funct. Anal. 85 (1989), 287–306. DOI 10.1016/0022-1236(89)90038-4 | MR 1012207
[9] Glover M., Rao H., Sikic H., Song R.: $\Gamma$-potentials, classical and modern potential theory and applications. Nato ASI Series, Series C Vol. 430, Kluwer Academic Publ., Dordrecht-Boston-London, 1994, pp. 217–232. MR 1321619
[10] Hmissi F.: On energy formulas for symmetric semigroups. Ann. Math. Sil. 19 (2005), 7–18. MR 2225433 | Zbl 1102.31010
[11] Hmissi M.: Lois de sortie et semi-groupes basiques. Manuscripta Math. 75 (1992), 293–302. DOI 10.1007/BF02567086 | MR 1167135 | Zbl 0759.60080
[12] Hmissi M.: Sur la représentation par les lois de sortie. Math. Z. 213 (1993), 647–656. DOI 10.1007/BF03025742 | MR 1231882 | Zbl 0790.31006
[13] Hmissi M.: On the functional equation of exit laws for lattice semigroups. Rocznik Nauk.-Dydakt. Prace Mat. No. 15 (1998), 63–71. MR 1826075 | Zbl 1160.39326
[14] Hmissi M., Mejri H.: On representation by exit laws for some Bochner subordinated semigroups. Ann. Math. Sil. 22 (2008), 7–26. MR 2569077 | Zbl 1190.47042
[15] Hmissi M., Mejri H., Mliki E.: On the fractional powers of semidynamical systems. Grazer Math. Ber. 351 (2007), 66–78. MR 2381104 | Zbl 1152.45005
[16] Hmissi M., Mejri H., Mliki E.: On the abstract exit equation. Grazer Math. Ber. 354 (2009), 84–98. MR 2649011
[17] Jacob N.: Pseudo Differential Operators and Markov Processes, Vol. 2: Generators and their semigroups. Imperial College Press, London, 2003.
[18] Sato K.: Lévy Processes and Infinitely Divisible Distributions. Cambridge Studies in Advanced Mathematics, 68, Cambridge University Press, Cambridge, 1999. MR 1739520 | Zbl 0973.60001
[19] Yosida K.: Functional Analysis. Springer, Heidelberg-New York, 1965. Zbl 0830.46001
Partner of
EuDML logo