Previous |  Up |  Next

Article

Keywords:
composition; end behavior of convergence of power series; convex and balanced set; formal power series
Summary:
In this note we investigate a relationship between the boundary behavior of power series and the composition of formal power series. In particular, we prove that the composition domain of a formal power series $g$ is convex and balanced which implies that the subset $\overline{\mathbb X}_g $ consisting of formal power series which can be composed by a formal power series $g$ possesses such properties. We also provide a necessary and sufficient condition for the superposition operator $T_g$ to map $\overline{\mathbb X}_g$ into itself or to map ${\mathbb X}_g$ into itself, respectively.
References:
[1] Henrici P.: Applied and Computational Complex Analysis. John Wiley and Sons, New York, 1988. MR 0372162 | Zbl 1107.30300
[2] Remmert R.: Theory of Complex Functions. Fouth corrected printing, Springer, New York, Berlin, Heidelberg, 1998. MR 1084167 | Zbl 0780.30001
[3] Raney G.: Functional composition patterns and power series reversion. Trans. Amer. Math. Soc. 94 (1960), no. 3, 441–451. DOI 10.1090/S0002-9947-1960-0114765-9 | MR 0114765 | Zbl 0131.01402
[4] Cheng C.C., McKay J., Towber J., Wang S.S., Wrigh D.: Reversion of formal power series and the extended Raney coefficients. Trans. Amer. Math. Soc. 349 (1997), no. 5, 1769–1782. DOI 10.1090/S0002-9947-97-01781-9 | MR 1390972
[5] Constantine G.M., Savits T.H.: A multivariate Faa Di Bruno formula with applications. Trans. Amer. Math. Soc. 348 (1996), no. 2, 503–520. DOI 10.1090/S0002-9947-96-01501-2 | MR 1325915 | Zbl 0846.05003
[6] Li H.: $p$-adic power series which commute under composition. Trans. Amer. Math. Soc. 349 (1997), no. 4, 1437–1446. DOI 10.1090/S0002-9947-97-01514-6 | MR 1327259 | Zbl 0990.11073
[7] Chaumat J., Chollet A.M.: On composite formal power series. Trans. Amer. Math. Soc. 353 (2001), no. 4, 1691–1703. DOI 10.1090/S0002-9947-01-02733-7 | MR 1806723 | Zbl 0965.13015
[8] Eakin P.M., Harris G.A.: When $\Phi (f)$ convergent implies $f$ is convergent?. Math. Ann. 229 (1977), 201–210. DOI 10.1007/BF01391465 | MR 0444651
[9] Gan X., Knox N.: On composition of formal power series. Int. J. Math. and Math. Sci. 30 (2002), no. 12, 761–770. DOI 10.1155/S0161171202107150 | MR 1917671 | Zbl 0998.13010
[10] Neelon T.S.: On solutions of real analytic equations. Proc. Amer. Math. Soc. 125 (1997), no. 9, 2531–2535. DOI 10.1090/S0002-9939-97-03894-X | MR 1396991 | Zbl 0890.32004
[11] Neelon T.S.: On solutions to formal equations. Bull. Belg. Math. Soc. 7 (2000), no. 3, 419–427. MR 1788146 | Zbl 0982.13011
[12] Droste M., Zhang G.: On transformation of formal power series. Inform. and Comp. 184 (2003), no. 2, 369–383. DOI 10.1016/S0890-5401(03)00066-X | MR 1987985
[13] Pravica D., Spurr M.: Unique summing of formal power series solutions to advanced and delayed differential equations. Discrete Contin. Dyn. Syst. 2005, suppl., 730–737. MR 2192733 | Zbl 1155.34371
[14] Sibuya Y.: Formal power series solutions in a parameter. J. Differential Equations 190 (2003), no. 2, 559–578. DOI 10.1016/S0022-0396(02)00083-9 | MR 1970042 | Zbl 1029.34079
[15] Gan X.: A generalized chain rule for formal power series. Commun. Math. Anal. 2 (2007), no. 1, 37–44. MR 2332968 | Zbl 1166.26304
[16] Lang S.: Complex Analysis. Second edition, Graduate Texts in Mathematics, 103, Springer, New York, 1985. DOI 10.1007/978-1-4757-1871-3 | MR 0788885 | Zbl 0933.30001
[17] Stromberg K.R.: Introduction to Classical Real Analysis. Wadsworth International, Belmont, Calif., 1981. MR 0604364 | Zbl 0454.26001
Partner of
EuDML logo