Previous |  Up |  Next

Article

Keywords:
Kurzweil-Henstock integral; Cauchy's residue theorem
Summary:
Let $[ a,b] $ be an interval in $\mathbb R$ and let $F$ be a real valued function defined at the endpoints of $[a,b]$ and with a certain number of discontinuities within $[ a,b] $. Assuming $F$ to be differentiable on a set $[ a,b] \backslash E$ to the derivative $f$, where $E$ is a subset of $[ a,b] $ at whose points $F$ can take values $\pm \infty $ or not be defined at all, we adopt the convention that $F$ and $f$ are equal to $0$ at all points of $E$ and show that $\mathcal {KH}\hbox {\rm -vt}\int _a^bf=F( b) -F( a) $, where $\mathcal {KH}\hbox {\rm -vt}$ denotes the total value of the {\it Kurzweil-Henstock} integral. The paper ends with a few examples that illustrate the theory.
References:
[1] Bartle, R. G.: A Modern Theory of Integration. Graduate Studies in Math. Vol. 32, AMS, Providence (2001). DOI 10.1090/gsm/032/07 | MR 1817647 | Zbl 0968.26001
[2] Garces, I. J. L., Lee, P. Y.: Convergence theorem for the $H_1$-integral. Taiw. J. Math. 4 (2000), 439-445. DOI 10.11650/twjm/1500407260 | MR 1779108
[3] Gordon, R. A.: The Integrals of Lebesgue, Denjoy, Perron and Henstock. Graduate Studies in Math., Vol. 4, AMS, Providence (1994). DOI 10.1090/gsm/004/09 | MR 1288751 | Zbl 0807.26004
[4] Macdonald, A.: Stokes' theorem. Real Analysis Exchange 27 (2002), 739-747. DOI 10.14321/realanalexch.27.2.0739 | MR 1923163 | Zbl 1059.26008
[5] Sinha, V., Rana, I. K.: On the continuity of associated interval functions. Real Analysis Exchange 29 (2003/2004), 979-981. DOI 10.14321/realanalexch.29.2.0979 | MR 2083833
Partner of
EuDML logo