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CAUCHY’S RESIDUE THEOREM FOR A CLASS OF

REAL VALUED FUNCTIONS

Branko Sarić, Čačak

(Received June 12, 2009)

Abstract. Let [a, b] be an interval in R and let F be a real valued function defined at the
endpoints of [a, b] and with a certain number of discontinuities within [a, b]. Assuming F

to be differentiable on a set [a, b] \ E to the derivative f , where E is a subset of [a, b] at
whose points F can take values ±∞ or not be defined at all, we adopt the convention that

F and f are equal to 0 at all points of E and show that KH-vt
∫ b

a
f = F (b)− F (a), where

KH-vt denotes the total value of the Kurzweil-Henstock integral. The paper ends with a
few examples that illustrate the theory.
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1. Introduction

Let [a, b] be a compact interval in R. It is an old result that for an ACGδ func-

tion F : [a, b] 7→ R on [a, b], which is differentiable almost everywhere on [a, b],

its derivative f is integrable (in the Kurzweil-Henstock sense) on [a, b] and KH-
∫ b

a
f = F (b) − F (a), [3, Theorem 9.17]. The aim of this note is to define a new

definite integral named the total Kurzweil-Henstock integral that can be used to

extend the above mentioned result to any real valued function F defined and dif-

ferentiable on [a, b] \ E, where E is a certain subset of [a, b] at whose points F can

take values ±∞ or not be defined at all. Unless otherwise stated, in what follows we

assume that the endpoints of [a, b] do not belong to E. Now, define point functions

Fex : [a, b] 7→ R and DexF : [a, b] 7→ R by extending F and its derivative f from

The author’s research is supported by the Ministry of Science, Technology and Develop-
ment, Republic of Serbia (Project ON144002).
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[a, b] \ E to E by Fex(x) = 0 and DexF (x) = 0 for x ∈ E, so that

Fex(x) =

{

F (x) if x ∈ [a, b] \ E,

0 if x ∈ E and
(1.1)

DexF (x) =

{

f(x) if x ∈ [a, b] \ E,

0 if x ∈ E.

2. Preliminaries

A partition P [a, b] of [a, b] ∈ R is a finite set (collection) of interval-point pairs

{([ai, bi], xi) : i = 1, . . . , ν}, such that the subintervals [ai, bi] are non-overlapping,
⋃

i6ν

[ai, bi] = [a, b] and xi ∈ [ai, bi]. The points {xi}i6ν are the tags of P [a, b], [2]. It

is evident that a given partition of [a, b] can be tagged in infinitely many ways by

choosing different points as tags. If E is a subset of [a, b], then the restriction of

P [a, b] to E is a finite collection of ([ai, bi], xi) ∈ P [a, b] such that each xi ∈ E. In

symbols, P [a, b]
∣

∣

E
= {([ai, bi], xi) : xi ∈ E, i = 1, . . . , ν}. Let P [a, b] be the family

of all partitions P [a, b] of [a, b]. Given δ : [a, b] 7→ R+, named a gauge, a partition

P [a, b] ∈ P [a, b] is called δ-fine if [ai, bi] ⊆ (xi−δ(xi), xi +δ(xi)). By Cousin’s lemma

the set of δ-fine partitions of [a, b] is nonempty, [4].

The collection I([a, b]) is the family of compact subintervals I of [a, b]. The

Lebesgue measure of the interval I is denoted by |I|. Any real valued function

defined on I([a, b]) is an interval function. For a function f : [a, b] 7→ R, the associ-

ated interval function of f is an interval function f : I([a, b]) 7→ R, again denoted by

f , [5]. If f ≡ 0 on [a, b] then its associated interval function is trivial.

A function f : [a, b] 7→ R is said to be Kurzweil-Henstock integrable on [a, b] to

a real number A if for every ε > 0 there exists a gauge δε : [a, b] 7→ R+ such that
∣

∣

∣

∑

i6ν

[

f(xi)
∣

∣[ai, bi]
∣

∣

]

− A
∣

∣

∣
< ε, whenever P [a, b] is a δε-fine partition of [a, b]. In

symbols, A = KH-
∫ b

a
f .

3. Main results

In what follows we will use the notation

(3.1) Ξf (P [a, b]) =
∑

i6ν

[f(xi)|bi − ai|] and ΣΦ(P [a, b]) =
∑

i6ν

[Φ(bi) − Φ(ai)].

Now, we are in a position to introduce the total Kurzweil-Henstock integral.
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Definition 3.1. For any compact interval [a, b] ∈ R let E be a non-empty subset

of [a, b]. A function f : [a, b] 7→ R is said to be totallyKurzweil-Henstock integrable to

a real number ℑ on [a, b] if there exists a nontrivial interval function Φ: I([a, b]) 7→ R

with the following property: for every ε > 0 there exists a gauge δε on [a, b] such that

|Ξf (P [a, b])−ΣΦ(P [a, b]|[a,b]\E)| < ε and ΣΦ(P [a, b]) = ℑ, whenever P [a, b] ∈ P [a, b]

is a δε-fine partition and P [a, b]|[a,b]\E is its restriction to [a, b] \ E. In symbols,

KH-vt
∫ b

a
f = ℑ.

Definition 3.2. Let E be a non-empty subset of [a, b]. Then an interval function

Φ: I([a, b]) 7→ R is said to be basically summable (BSδε
) to the sum ℜ on E, if there

exists a real number ℜ with the following property: given ε > 0 there exists a gauge

δε on [a, b] such that |ΣΦ(P [a, b]|E) − ℜ| < ε, whenever P [a, b] ∈ P [a, b] is a δε-fine

partition andP [a, b]|E is its restriction to E. If E can be written as a countable union

of sets on each of which the interval function Φ is BSδε
, then Φ is said to be BSGδε

on E.

Our main result reads as follows.

Theorem 3.1. For any compact interval [a, b] ∈ R let E be a non-empty subset of

[a, b] at whose points a real valued function F can take values ±∞ or not be defined

at all. If F is defined and differentiable on the set [a, b] \ E, then DexF is totally

Kurzweil-Henstock integrable on [a, b] and

(3.2) KH-vt

∫ b

a

DexF = F (b) − F (a).

If the associated interval function of Fex defined by (1.1) is in addition basically

summable (BSδε
) to the sum ℜ on E, then

(3.3) F (b) − F (a) = KH-

∫ b

a

DexF + ℜ.

Before starting with the proof we give the following lemma.

Lemma 3.1. Let E be a non-empty subset of [a, b]. If a function f : [a, b] 7→ R

is totally Kurzweil-Henstock integrable on [a, b] and Φ is basically summable (BSδε
)

to the sum ℜ on E, then f is Kurzweil-Henstock integrable on [a, b] and

(3.4) KH-vt

∫ b

a

f = KH-

∫ b

a

f + ℜ.
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P r o o f. Given ε > 0 we will construct a gauge for f as follows. Since f is totally

Kurzweil-Henstock integrable on [a, b] it follows from Definition 3.1 that there exist a

real number ℑ and an interval function Φ with the following property: for every ε > 0

there exists a gauge δ∗ε on [a, b] such that |Ξf (P [a, b]) − ΣΦ(P [a, b]|[a,b]\E)| < ε and

ΣΦ(P [a, b]) = ℑ, whenever P [a, b] ∈ P [a, b] is a δ∗ε -fine partition and P [a, b]|[a,b]\E

is its restriction to [a, b] \ E. Choose a gauge δ⋆
ε(x) as required in Definition 3.2

above. The function δε = min(δ∗ε , δ⋆
ε) is a gauge on [a, b]. We now let P [a, b] =

{([ai, bi], xi) : i = 1, . . . , ν} be a δε-fine partition of [a, b]. It is readily seen that

|Ξf (P [a, b]) −ℑ + ℜ| = |Ξf (P [a, b]) −ℑ + ΣΦ(P [a, b]|E) − [ΣΦ(P [a, b]|E) −ℜ]|

6 |Ξf (P [a, b]) − ΣΦ(P [a, b]|[a,b]\E)| + |ΣΦ(P [a, b]|E) −ℜ| < 2ε.

Therefore, f is Kurzweil-Henstock integrable on [a, b] and KH-
∫ b

a
f = ℑ−ℜ, that is

KH-vt

∫ b

a

f = KH-

∫ b

a

f + ℜ.

�

We now turn to the proof of Theorem 3.1.

P r o o f. Given ε > 0, by definition of f at the point x ∈ [a, b] \ E there exists

δε(x) > 0 such that if x ∈ [u, v] ⊆ [x − δε(x), x + δε(x)] and x ∈ [a, b] \ E, then

|F (v) − F (u) − f(x)(v − u)| < ε(v − u).

For Fex defined by (1.1) let Fex : I([a, b]) 7→ R be its associated interval function.

We now let P [a, b] = {([ai, bi], xi) : i = 1, . . . , ν} be a δε-fine partition of [a, b]. Since

F (b) − F (a) =
ν
∑

i=1

[Fex(bi) − Fex(ai)] and (remember if x ∈ E, then DexF = 0)

|ΞDexF (P [a, b]) − ΣFex
(P [a, b]|[a,b]\E)|

= |Ξf (P [a, b]|[a,b]\E) − ΣF (P [a, b]|[a,b]\E)| < ε(b − a),

it follows from Definition 3.1 that DexF is totally Kurzweil-Henstock integrable on

[a, b] and

KH-vt

∫ b

a

DexF = F (b) − F (a).

Finally, by virtue of Lemma 3.1

F (b) − F (a) = KH-

∫ b

a

DexF + ℜ.

�
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By Definition 3.2 one can easily see that if ℜ = 0 then F has negligible variation

on E, [1, Definition 5.11]. So, we are now in position to define a residual function

of F .

Definition 3.3. Let F : [a, b] 7→ R. A function R : [a, b] 7→ R is said to be a

residual function of F on [a, b] if given ε > 0 there exists a gauge δε on [a, b] such

that |F (bi) − F (ai) −R(xi)| < ε, whenever P [a, b] ∈ P [a, b] is a δε-fine partition.

Definition 3.4. Let E be a non-empty subset of [a, b] and let F : [a, b] 7→ R be

a function whose associated interval function F : I([a, b]) 7→ R is BSδε
(BSGδε

) to

the sum ℜ on E. Then, a residual function R : [a, b] 7→ R of F is said to be also

BSδε
(BSGδε

) to the same sum ℜ on E. In symbols,
∑

x∈E

R(x) = ℜ.

Clearly, Definition 3.4 establishes a causal connection between Definitions 3.2

and 3.3. If E is a countable set, the causality is so obvious. However, if E is an

infinite set, then this connection is not necessarily a causal connection. Namely, if

F : [a, b] 7→ R has negligible variation on a subset E of [a, b], which is a countably

infinite set, then its residual function R vanishes identically on E, so that the sum
∑

x∈E

R(x) is reduced to the so-called indeterminate expression∞ · 0 that has, in this

case, the null value. On the contrary, if F has no negligible variation on E, and

its residual function R also vanishes identically on E, as in the case of the Cantor

function, then the sum
∑

x∈E

R(x) is reduced to the indeterminate expression ∞ · 0

that actually has, in Cantor’s case, the numerical value of 1. By Definition 3.4, we

may rewrite (3.3) as

(3.5) F (b) − F (a) = KH-

∫ b

a

DexF +
∑

x∈E

R(x).

If f in addition vanishes identically on [a, b] \ E, then

(3.6) F (b) − F (a) =
∑

x∈E

R(x).

This result is an extension of Cauchy’s residue theorem in R.
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4. Examples

For an illustration of (3.5) and (3.6) we consider the Heaviside unit function defined

by

(4.1) F (x) =

{

0 if a 6 x 6 0,

1 if 0 < x 6 b.

In this case, if a < 0, then KH-vt
∫ b

a
DexF = 1, in spite of the fact that DexF ≡ 0

on [a, b]. Accordingly, it follows from (3.5) and (3.6) that R(0) = 1, since

(4.2) f(x) =

{

+∞ if x = 0,

0 otherwise,

where f is the derivative of F , and KH-
∫ b

a
DexF = 0.

Let [a, b] ⊂ R be an arbitrary compact interval within which is the point x = 0.

For an illustration of the result (3.2) of Theorem 3.1 we consider the real valued

function F (x) = 1/x that is differentiable to f(x) = −1/x2 at all but the exceptional

set {0} of [a, b]. In spite of the fact that f is not Kurzweil-Henstock integrable on

[a, b] it follows from (3.2) that KH-vt
∫ b

a
DexF = (a − b)/(ab). In this case, R(x) is

not defined at the point x = 0, that is

(4.3) R(x) =

{

+∞ if x = 0,

0 otherwise,

and KH-vt
∫ b

a
DexF is reduced to the so-called indeterminate expression∞−∞ (in

the sense of the difference of limits) that actually has, in this situation, the real

numerical value of (a − b)/(ab).
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