[1] Aramaki, J.:
On an elliptic model with general nonlinearity associated with superconductivity. Int. J. Differ. Equ. Appl. 10 (4) (2006), 449–466.
MR 2321824
[2] Aramaki, J.:
On an elliptic problem with general nonlinearity associated with superheating field in the theory of superconductivity. Int. J. Pure Appl. Math. 28 (1) (2006), 125–148.
MR 2227157 |
Zbl 1112.82053
[3] Aramaki, J.:
A remark on a semi-linear elliptic problem with the de Gennes boundary condition associated with superconductivity. Int. J. Pure Appl. Math. 50 (1) (2008), 97–110.
MR 2478221
[4] Aramaki, J.:
Nodal sets and singular sets of solutions for semi-linear elliptic equations associated with superconductivity. Far East J. Math. Sci. 38 (2) (2010), 137–179.
MR 2662062 |
Zbl 1195.82103
[5] Aramaki, J., Nurmuhammad, A., Tomioka, S.:
A note on a semi-linear elliptic problem with the de Gennes boundary condition associated with superconductivity. Far East J. Math. Sci. 32 (2) (2009), 153–167.
MR 2522753 |
Zbl 1171.82020
[6] Aronszajn, N.:
A unique continuation theorem for solutions of elliptic partial differential equations or inequalities of second order. J. Math. Pures Appl. (9) 36 (1957), 235–249.
MR 0092067 |
Zbl 0084.30402
[7] Elliot, C. M., Matano, H., Tang, Q.:
Zeros of a complex Ginzburg-Landau order parameter with applications to superconductivity. European J. Appl. Math. 5 (1994), 431–448.
MR 1309733
[9] Garofalo, N., Lin, F.-H.:
Monotonicity properties of variational integrals, $A_p$ weights and unique continuation. Indiana Univ. Math. J. 35 (2) (1986), 245–268.
DOI 10.1512/iumj.1986.35.35015 |
MR 0833393
[10] Gilbarg, D., Trudinger, N. S.:
Elliptic Partial Differential Equations of Second Order. Springer, New York, 1983.
MR 0737190 |
Zbl 0562.35001
[12] Han, Q.:
Schauder estimates for elliptic operators with applications to nodal set. J. Geom. Anal. 10 (3) (2000), 455–480.
DOI 10.1007/BF02921945 |
MR 1794573
[14] Hardt, R., Hoffmann-Ostenhof, M., Hoffmann-Ostenhof, T., Nadirashivili, N.:
Critical sets of solutions to elliptic equations. J. Differential Geom. 51 (1999), 359–373.
MR 1728303
[19] Mattila, P.:
Geometry of Sets and Measures in Euclidean Spaces. Cambridge Univ. Press, 1995.
MR 1333890 |
Zbl 0819.28004
[20] Morgan, F.:
Geometric Measure Theory, A beginner’s Guide. fourth ed., Academic Press, 2009.
MR 2455580 |
Zbl 1179.49050
[23] Pan, X.-B.:
Nodal sets of solutions of equations involving magnetic Schrödinger operator in three dimension. J. Math. Phys. 48 (2007), 053521.
DOI 10.1063/1.2738752 |
MR 2329883