[1] Bartels, R. H., Stewart, G. W.:
Solution of the matrix equation $AX+XB=C$. Comm. ACM 15 (1972), 820–826.
DOI 10.1145/361573.361582
[2] Chen, M. Q., Li, X. Z.:
An estimation of the spectral radius of a product of block matrices. Linear Algebra Appl. 379 (2004), 267–275.
MR 2039742 |
Zbl 1043.15012
[3] Golub, G. H., Loan, C. F. Van:
Matrix Computations Third edition. Johns Hopkins University Press, Baltimore 1996.
MR 1417720
[4] Hall, C. A., Porsching, T. A.:
Bounds for the maximal eigenvalue of a nonnegative irreducible matrix. Duke Math. J. 36 (1969), 159–164.
MR 0240121
[5] Hu, G. D., Hu, G. D.: A relation between the weighted logarithmic norm of matrix and Lyapunov equation. BIT 40 (2000), 506–510.
[6] Hu, G. D., Liu, M. Z.:
The weighted logarithmic matrix norm and bounds of the matrix exponential. Linear Algebra Appl. 390 (2004), 145–154.
MR 2083412 |
Zbl 1060.15024
[7] Hu, G. D., Liu, M. Z.:
Properties of the weighted logarithmic matrix norms. IMA J. Math. Contr. Inform. 25 (2008), 75–84.
MR 2410261 |
Zbl 1144.15018
[9] Lancaster, P.:
The Theory of Matrices with Application. Academic Press, Orlando 1985.
MR 0245579
[11] Lu, L. Z., Ng, M. K.:
Localization of Perron roots. Linear Algebra its Appl. 392 (2004), 103–107.
MR 2095910 |
Zbl 1067.15004
[12] Mond, B., Pecaric, J. E.:
On an inequality for spectral radius. Linear and Multilinear Algebra 20 (1996), 203–206.
MR 1382076 |
Zbl 0866.15011
[14] Zhu, Q., Hu, G. D., Zeng, L.: Estimating the spectral radius of a real matrix by discrete Lyapunov equation. J. Difference Equations Appl. To appear.