Previous |  Up |  Next

Article

Keywords:
cross-entropy; acyclic hypergraph; connection tree; junction tree; probabilistic database; relational database
Summary:
In probability theory, Bayesian statistics, artificial intelligence and database theory the minimum cross-entropy principle is often used to estimate a distribution with a given set $P$ of marginal distributions under the proportionality assumption with respect to a given ``prior'' distribution $q$. Such an estimation problem admits a solution if and only if there exists an extension of $P$ that is dominated by $q$. In this paper we consider the case that $q$ is not given explicitly, but is specified as the maximum-entropy extension of an auxiliary set $Q$ of distributions. There are three problems that naturally arise: (1) the existence of an extension of a distribution set (such as $P$ and $Q$), (2) the existence of an extension of $P$ that is dominated by the maximum entropy extension of $Q$, (3) the numeric computation of the minimum cross-entropy extension of $P$ with respect to the maximum entropy extension of $Q$. In the spirit of a divide-and-conquer approach, we prove that, for each of the three above-mentioned problems, the global solution can be easily obtained by combining the solutions to subproblems defined at node level of a suitable tree.
References:
[1] Asmussen, S., Edwards, D.: Collapsibility and response variables in contingency tables. Biometrika 70 (1983), 367–378. DOI 10.1093/biomet/70.3.567 | MR 0725370 | Zbl 0549.62041
[2] Bacharach, M.: Biproportional Matrices and Input-Output Change. Cambridge University Press, Cambridge 1970. MR 0263409 | Zbl 0195.49705
[3] Badsberg, J.-H., Malvestuto, F. M.: An implementation of the iterative proportional fitting procedure by propagation trees. Comput. Statist. Data Analysis 37 (2001), 297–322. DOI 10.1016/S0167-9473(01)00013-5 | MR 1856676 | Zbl 1061.65500
[4] Beeri, C., Vardi, M.: On the Properties of Full Join Dependencies. Adv. Database Theory I, Plenum Press, New York 1981.
[5] Beeri, C., Fagin, R., Maier, D., Yannakakis, M.: On the desirability of acyclic database schemes. J. Assoc. Comput. Mach. 30 (1983), 479–513. DOI 10.1145/2402.322389 | MR 0709830 | Zbl 0624.68087
[6] Berge, C.: Hypergraphs. North-Holland, Amsterdam 1989. MR 1013569 | Zbl 0674.05001
[7] Berge, C.: Discrete Multivariate Analysis. MIT Press, Cambridge 1975.
[8] Csiszár, I.: I-divergence geometry of probability distributions and minimization problems. Ann. Probab. 3 (1975), 146–158. DOI 10.1214/aop/1176996454 | MR 0365798
[9] Csiszár, I.: Maxent, mathematics, and information theory. In: Proc. Internat. Workshop on “Maximum entropy and Bayesian methods", 1995, pp. 35–50. MR 1446714
[10] Dall’Aglio, G., Kotz, K., Salinetti, G.: Advances in Probability Distributions with Given Marginals. Kluwer Academic Pub., Dordrecht, Boston, London 1991. MR 1215942
[11] Darroch, J. N., Ratcliff, D.: Generalized iterative scaling for log-linear models. Ann. Math. Statist. 43 (1972), 1470–1480. DOI 10.1214/aoms/1177692379 | MR 0345337 | Zbl 0251.62020
[12] Deming, W. E.: Statistical Adjustment of Data. Dover Pub., New York 1943. MR 0009819 | Zbl 0060.31504
[13] Deming, W. E., Stephan, F. F.: On a least squares adjustment of a sampled frequency table when the expected marginal totals are known. Ann. Math. Statist. 11 (1940), 427–444. DOI 10.1214/aoms/1177731829 | MR 0003527 | Zbl 0024.05502
[14] Endo, Y., Takemura, A. I.: Iterative proportional scaling via decomposable submodels for contingency tables. Comput. Statist. Data Analysis 53 (2009), 966–978. DOI 10.1016/j.csda.2008.11.013 | MR 2657062
[15] Fienberg, S. E.: An iterative procedure for estimation in contingency tables. Ann. Math. Statist. 41 (1970), 907–917. DOI 10.1214/aoms/1177696968 | MR 0266394 | Zbl 0198.23401
[16] Fienberg, S. E., Meyer, M. M.: Iterative proportional fitting. In: Encyclopedia of Statistical Sciences (S. Kotz, N. L. Johnson, and C. B. Read, eds.), 4, John Wiley and Sons, New York, pp.  275–279.
[17] Haberman, S. J.: Log-linear Models for Contingency Tables. University of Chicago Press, Chicago 1974.
[18] Ireland, C. T., Kullback, S.: Contingency tables with given marginals. Biometrika 55 (1968), 179–188. DOI 10.1093/biomet/55.1.179 | MR 0229329 | Zbl 0155.26701
[19] Jiroušek, R.: Composition of probability measures on finite spaces. In: Proc. XIII Internat. Conf. Uncertainty in Artificial Intelligence 1997, pp. 274–281.
[20] Jiroušek, R., Přeučil, S.: On the effective implementation of the iterative proportional fitting procedure. Comput. Statist. Data Analysis 19 (1995), 177–189. DOI 10.1016/0167-9473(93)E0055-9
[21] Johnson, R. W.: Axiomatic characterization of the directed divergences and their linear combinations. IEEE Trans. Inform. Theory 25 (1979), 709–716. DOI 10.1109/TIT.1979.1056113 | MR 0551270 | Zbl 0422.60016
[22] Kellerer, H. G.: Verteilungsfunktionen mit gegebenen marginalverteilungen. Zeitschrift Wahrscheinlichkeitstheorie und Verw. Gebiete 3 (1964), 247–270. DOI 10.1007/BF00534912 | MR 0175158 | Zbl 0126.34003
[23] Kellerer, H. G.: Masstheoretische marginalprobleme. Math. Annalen 153 (1964), 168–198. DOI 10.1007/BF01360315 | MR 0161956 | Zbl 0118.05003
[24] Kern-Isberner, G.: Characterizing the principle of minimum-cross entropy within a conditional-logical framework. Artificial Intelligence 98 (1998), 169–208. DOI 10.1016/S0004-3702(97)00068-4 | MR 1614388 | Zbl 0903.68181
[25] Ku, H. H., Kullback, S.: Interaction in multidimensional contingency tables: an information-theoretic approach. J. Res. Nat. Bur. Standards - Math. Sci. 72 B (1968), 159–199. MR 0258223 | Zbl 0274.62036
[26] Lauritzen, S. L.: Graphical Models. Oxford Science Pub., Clarendom Press, Oxford 1996. MR 1419991
[27] Lauritzen, S. L., Speed, M. P., Vijayan, K.: Decomposable graphs and hypergraphs. J. Austral. Math. Soc. Ser. A 36 (1984), 12–29. DOI 10.1017/S1446788700027300 | MR 0719998 | Zbl 0533.05046
[28] Lauritzen, S. L., Spiegelhalter, D. J.: Local computations with probabilities on graphical structures and their application to expert systems. J. Roy. Stat. Soc. Ser. B 50 (1988), 157–224. MR 0964177 | Zbl 0684.68106
[29] Leimer, G.: Optimal decomposition by clique separators. Discrete Math. 113 (1993), 99–123. DOI 10.1016/0012-365X(93)90510-Z | MR 1212872 | Zbl 0793.05128
[30] Leontief, W. W.: The Structure of American Economy 1919–1929. Oxford University Press, New York 1941.
[31] Leontief, W. W., Strout, A.: Multiregional input-output analysis. In: Structural Interdependence and Economic Development, 1963, pp. 119–169.
[32] Madigan, D., Mosurski, K.: An extension of the results of Asmussen and Edwards on collapsibility in contingency tables. Biometrika 77 (1990), 315–319. DOI 10.1093/biomet/77.2.315 | MR 1064803 | Zbl 0731.62113
[33] Madigan, D., Mosurski, K.: Errata: An extension of the results of Asmussen and Edwards on collapsibility in contingency tables. Biometrika 86 (1999) 973. MR 1741994
[34] Maier, D.: The Theory of Relational Databases. Computer Science Press, 1983. ( http://web.cecs.pdx.edu/ maier/TheoryBook/TRD.html) MR 0691493 | Zbl 0519.68082
[35] Maier, D., Ullman, J. D.: Connections in acyclic hypergraphs. Theoret. Comput. Sci. 32 (1984), 185–199. DOI 10.1016/0304-3975(84)90030-6 | MR 0761167 | Zbl 0557.05054
[36] Malvestuto, F. M.: Answering queries in categorical data bases. In: Proc. VI ACM Symp. Principles of Database Systems 1987, pp. 87–96.
[37] Malvestuto, F. M.: Existence of extensions and product extensions for discrete probability distributions. Discrete Math. 69 (1988), 61–77. DOI 10.1016/0012-365X(88)90178-1 | MR 0935028 | Zbl 0637.60021
[38] Malvestuto, F. M.: Computing the maximum-entropy extension of given discrete probability distributions. Computat. Statist. Data Anal. 8 (1989), 299–311. DOI 10.1016/0167-9473(89)90046-7 | MR 1028405 | Zbl 0726.62012
[39] Malvestuto, F. M.: Testing implication of hierarchical loglinear models for discrete probability distributions. Statist. Computing 6 (1996), 169–176. DOI 10.1007/BF00162528
[40] Malvestuto, F. M.: A hypergraph-theoretic analysis of collapsibility and decomposability for extended loglinear models. Statist. Computing 11 (2001), 155–169. DOI 10.1023/A:1008979300007 | MR 1837135
[41] Malvestuto, F. M.: From conditional independences to factorization constraints with discrete random variables. Ann. Math. Artificial Intelligence 35 (2002), 253–285. DOI 10.1023/A:1014551721406 | MR 1899954 | Zbl 1001.68033
[42] Malvestuto, F. M.: Canonical and monophonic convexities in hypergraphs. Discrete Math. 309 (2009), 4287–4298. DOI 10.1016/j.disc.2009.01.003 | MR 2519164 | Zbl 1211.05093
[43] Malvestuto, F. M., Moscarini, M.: A fast algorithm for query optimization in universal-relation databases. J. Comput. System Sci. 56 (1998), 299–309. DOI 10.1006/jcss.1998.1570 | MR 1633981 | Zbl 0913.68060
[44] Malvestuto, F. M., Moscarini, M.: Decomposition of a hypergraph by partial-edge separators. Theoret. Comput. Sci. 237 (2000), 57–79. DOI 10.1016/S0304-3975(98)00128-5 | MR 1756201 | Zbl 0939.68089
[45] Malvestuto, F. M., Pourabbas, E.: Customized answers to summary queries via aggregate views. In: Proc. XVI Intl. Conf. Scientific & Statistical Database Management 2004, pp. 193–202.
[46] Malvestuto, F. M., Pourabbas, E.: Local computation of answers to table queries on summary databases. In: Proc. XVII Intl. Conf. Scientific & Statistical Database Management 2005, pp. 263–272.
[47] Matúš, F.: Discrete marginal problem for complex measures. Kybernetika 24 (1988), 36–46. MR 0936552
[48] Matúš, F.: On the maximum-entropy extensions of probability measures over undirected graphs. In: Proc. III Workshop Uncertainty Processing in Expert Systems 1994, pp. 181–198.
[49] Matúš, F., Flusser, J.: Image representations via a finite Radon transform. IEEE Trans. Pattern Analysis and Machine Intelligence 15 (1993), 996–1006. DOI 10.1109/34.254058
[50] Purcell, N. J., Kish, L.: Estimation for small domains. Biometrics 35 (1979), 365–384. DOI 10.2307/2530340 | MR 0535774 | Zbl 0419.62092
[51] Purcell, N. J., Kish, L.: Postcensal estimates for local areas (or domains). Internat. Statist. Rev. 48 (1980), 3–18. DOI 10.2307/1402400 | Zbl 0433.62080
[52] Rüschendorf, L.: Convergence of the iterative proportional fitting procedure. Ann. Statist. 23 (1995), 1160–1174. DOI 10.1214/aos/1176324703 | MR 1353500
[53] Shore, J. E., Johnson, R. W.: Properties of cross-entropy minimization. IEEE Trans. Inform. Theory 27 (1981), 472–482. DOI 10.1109/TIT.1981.1056373 | MR 0635526 | Zbl 0459.94008
[54] Stephan, F. F.: An iterative method of adjusting sample frequencies tables when expected marginal totals are known. Ann. Math. Statist. 13 (1942), 166–178. DOI 10.1214/aoms/1177731604 | MR 0006674
[55] Stone, R., Brown, A.: A Computable Model for Economic Growth: A Programme for Growth, No. 1. Chapman Hall, London 1962.
[56] Tarjan, R. E., Yannakakis, M.: Simple linear-time algorithms to test chordality of graphs, test acyclicity of hypergraphs, and selectively reduce hypergraphs. SIAM J. Comput. 13 (1984), 566–579. DOI 10.1137/0213035 | MR 0749707
[57] Vomlel, J.: Integrating inconsistent data in a probabilistic model. J. Appl. Non-Classical Logics 14 (2004), 365–386. DOI 10.3166/jancl.14.367-386 | Zbl 1185.68699
[58] Vorob’ev, N. N.: Consistent families of measures and their extensions. Theor. Prob. Appl. 7 (1962), 147–163. DOI 10.1137/1107014
[59] Vorob’ev, N. N.: Markov measures and Markov extensions. Theor. Prob. Appl. 8 (1963), 420–429. DOI 10.1137/1108047 | MR 0169295
[60] Yannakakis, M.: Computing the minimum fill-in is NP-complete. SIAM J. Algebraic Discrete Mathematics 2 (1981), 77–79. DOI 10.1137/0602010 | MR 0604513 | Zbl 0496.68033
[61] Yannakakis, M.: Algorithms for acyclic database schemes. In: Proc. VII Internat. Conf. Very Large Data Bases 1981, pp. 82–94.
Partner of
EuDML logo