Previous |  Up |  Next

Article

Keywords:
stochastic dominance; stability; SSD portfolio efficiency measure
Summary:
In this paper, we deal with second-order stochastic dominance (SSD) portfolio efficiency with respect to all portfolios that can be created from a considered set of assets. Assuming scenario approach for distribution of returns several SSD portfolio efficiency tests were proposed. We introduce a $\delta$-SSD portfolio efficiency approach and we analyze the stability of SSD portfolio efficiency and $\delta$-SSD portfolio efficiency classification with respect to changes in scenarios of returns. We propose new SSD and $\delta$-SSD portfolio efficiency measures as measures of the stability. We derive a non-linear and mixed-integer non-linear programs for evaluating these measures. Contrary to all existing SSD portfolio inefficiency measures, these new measures allow us to compare any two $\delta$-SSD efficient or SSD efficient portfolios. Finally, using historical US stock market data, we compute $\delta$-SSD and SSD portfolio efficiency measures of several SSD efficient portfolios.
References:
[1] Dentcheva, D., Henrion, R., Ruszczyński, A.: Stability and sensitivity of optimization problems with first order stochastic dominance constraints. SIAM J. Optim. 18 (2007), 322–333. DOI 10.1137/060650118 | MR 2299687
[2] Dentcheva, D., Ruszczyński, A.: Optimization with stochastic dominance constraints. SIAM J. Optim. 14 (2003), 548–566. DOI 10.1137/S1052623402420528 | MR 2048155
[3] Dentcheva, D., Ruszczyński, A.: Optimality and duality theory for stochastic optimization problems with nonlinear dominance constraints. Math. Programming 99 (2004), 329–350. DOI 10.1007/s10107-003-0453-z | MR 2039044
[4] Dentcheva, D., Ruszczyński, A.: Portfolio optimization with stochastic dominance constraints. J. Banking and Finance 30 (2006), 2, 433–451. DOI 10.1016/j.jbankfin.2005.04.024
[5] Rudolf, G., Ruszczyński, A.: Optimization problems with second order stochastic dominance constraints: duality, compact formulations, and cut generation methods. SIAM J. Optim. 19 (2008), 3, 1326–1343. DOI 10.1137/070702473 | MR 2460744
[6] Hadar, J., Russell, W. R.: Rules for ordering uncertain prospects. Amer. Econom. Rev. 59 (1969), 1, 25–34.
[7] Hanoch, G., Levy, H.: The efficiency analysis of choices involving risk. Rev. Econom. Stud. 36 (1969), 335–346. DOI 10.2307/2296431 | Zbl 0184.45202
[8] Hardy, G. H., Littlewood, J. E., Polya, G.: Inequalities. Cambridge University Press, Cambridge 1934. Zbl 0634.26008
[9] Kopa, M., Chovanec, P.: A second-order stochastic dominance portfolio efficiency measure. Kybernetika 44 (2008), 2, 243–258. MR 2428222 | Zbl 1154.91456
[10] Kopa, M., Post, T.: A portfolio optimality test based on the first-order stochastic dominance criterion. J. Financial and Quantitative Analysis 44 (2009), 5, 1103–1124. DOI 10.1017/S0022109009990251
[11] Kopa, M.: An efficient LP test for SSD portfolio efficiency. Working paper, available at: http://ssrn.com/abstract=1340863
[12] Kuosmanen, T.: Efficient diversification according to stochastic dominance criteria. Management Sci. 50 (2004), 10, 1390–1406. DOI 10.1287/mnsc.1040.0284
[13] Levy, H.: Stochastic Dominance: Investment Decision Making Under Uncertainty. Second edition. Springer Science, New York 2006. MR 2239375 | Zbl 1109.91037
[14] Luedtke, J.: New formulations for optimization under stochastic dominance constraints. SIAM J. Optim. 19 (2008), 3, 1433–1450. DOI 10.1137/070707956 | MR 2466178 | Zbl 1180.90215
[15] Ogryczak, W., Ruszczyński, A.: Dual stochastic dominance and related mean-risk models. SIAM J. Optim. 13 (2002), 60–78. DOI 10.1137/S1052623400375075 | MR 1922754
[16] Pflug, G. Ch.: Some remarks on the value-at-risk and the conditional value-at-risk. In: Probabilistic Constrained Optimization: Methodology and Applications (S. Uryasev, ed.), Kluwer Academic Publishers, Norwell MA 2000, pp. 278–287. MR 1819417 | Zbl 0994.91031
[17] Post, T.: Empirical tests for stochastic dominance efficiency. J. Finance 58 (2003), 1905–1932. DOI 10.1111/1540-6261.00592
[18] Roman, D., Darby-Dowman, K., Mitra, G.: Portfolio construction based on stochastic dominance and target return distributions. Math. Programming, Series B 108 (2006), 541–569. DOI 10.1007/s10107-006-0722-8 | MR 2238714 | Zbl 1138.91476
[19] Römisch, W.: Stability of stochastic programming problems. In: Stochastic Programming. Handbooks in Operations Research and Management Science 10 (A. Ruszczyński and A. Shapiro, eds.), Elsevier, Amsterdam 2003, pp. 483–554. MR 2052760
[20] Rothschild, M., Stiglitz, J. E.: Rules for ordering uncertain prospects. J. Economic Theory 2 (1969), 225–243.
[21] Ruszczyński, A., Vanderbei, R. J.: Frontiers of stochastically nondominated portfolios. Econometrica 71 (2003), 4, 1287–1297. DOI 10.1111/1468-0262.t01-1-00448 | MR 1995832
[22] Uryasev, S., Rockafellar, R. T.: Conditional value-at-risk for general loss distributions. J. Banking and Finance 26 (2002), 1443–1471. DOI 10.1016/S0378-4266(02)00271-6
[23] Whitmore, G. A.: Third degree stochastic dominance. Amer. Econom. Rev. 60 (1970), 457–459.
Partner of
EuDML logo