Previous |  Up |  Next

Article

Keywords:
Taylor expansion; parametric programs; critical value function; generalized derivatives; envelope theorems; Lipschitz stability; $C^{1,1}$ optimization
Summary:
Studying a critical value function $\varphi$ in parametric nonlinear programming, we recall conditions guaranteeing that $\varphi$ is a $C^{1,1}$ function and derive second order Taylor expansion formulas including second-order terms in the form of certain generalized derivatives of $D \varphi$. Several specializations and applications are discussed. These results are understood as supplements to the well–developed theory of first- and second-order directional differentiability of the optimal value function in parametric optimization.
References:
[1] Bonnans, J. F., Shapiro, A.: Perturbation Analysis of Optimization Problems. Springer, New York 2000. MR 1756264 | Zbl 0966.49001
[2] Bütikofer, St.: Globalizing a nonsmooth Newton method via nonmonotone path search. Math. Meth. Oper. Res. 68 (2008), 235–256. DOI 10.1007/s00186-008-0219-8 | MR 2443312
[3] Bütikofer, St., Klatte, D.: A nonsmooth Newton method with path search and its use in solving $C^{1,1}$ programs and semi-infinite problems. Manuscript, February 2009.
[4] Clarke, F. H.: Optimization and Nonsmooth Analysis. Wiley, New York 1983. MR 0709590 | Zbl 0696.49002
[5] Dempe, S.: Foundations of Bilevel Programming. Kluwer, Dordrecht – Boston – London 2002. MR 1921449 | Zbl 1038.90097
[6] Demyanov, V. F., Malozemov, V. N.: Introduction to Minimax. Wiley, New York 1974. MR 0475823
[7] Facchinei, F., Pang, J.-S.: Finite-Dimensional Variational Inequalities and Complementarity Problems, Volumes I, II. Springer, New York 2003.
[8] Fiacco, A. V.: Introduction to Sensitivity and Stability Analysis. Academic Press, New York 1983. MR 0721641 | Zbl 0543.90075
[9] Gauvin, J., Dubeau, F.: Differential properties of the marginal function in mathematical programming. Math. Program. Study 19 (1982), 101–119. DOI 10.1007/BFb0120984 | MR 0669727 | Zbl 0502.90072
[10] Gauvin, J.: Theory of Nonconvex Programming. Les Publications CRM, Montreal 1994.
[11] Golstein, E. G.: Theory of Convex Programming. (Trans. Math. Monographs 36.) American Mathematical Society, Providence 1972. MR 0359802
[12] Hiriart-Urruty, J.-B., Strodiot, J. J., Nguyen, V. Hien: Generalized Hessian matrix and second order optimality conditions for problems with $ {C}^{1,1} $-data. Appl. Math. Optim. 11 (1984), 43–56. DOI 10.1007/BF01442169 | MR 0726975
[13] Jittorntrum, K.: Solution point differentiability without strict complementarity in nonlinear programming. Math. Program. Study 21 (1984), 127–138. DOI 10.1007/BFb0121215 | MR 0751247 | Zbl 0571.90080
[14] Jongen, H. Th., Möbert, T., Tammer, K.: On iterated minimization in nonconvex optimization. Math. Oper. Res. 11 (1986), 679–691. DOI 10.1287/moor.11.4.679 | MR 0865563
[15] Klatte, D.: On quantitative stability for non-isolated minima. Control and Cybernetics 23 (1994), 183–200. MR 1284514 | Zbl 0808.90120
[16] Klatte, D., Kummer, B.: Generalized Kojima functions and Lipschitz stability of critical points. Comput. Optim. Appl. 13 (1999), 61–85. DOI 10.1023/A:1008648605071 | MR 1704114 | Zbl 1017.90104
[17] Klatte, D., Kummer, B.: Nonsmooth Equations in Optimization – Regularity, Calculus, Methods and Applications. Kluwer, Dordrecht – Boston – London 2002. MR 1909427 | Zbl 1173.49300
[18] Klatte, D., Kummer, B.: Optimization methods and stability of inclusions in Banach spaces. Math. Program. Ser. B 117 (2009), 305–330. DOI 10.1007/s10107-007-0174-9 | MR 2421309 | Zbl 1158.49007
[19] Klatte, D., Tammer, K.: Strong stability of stationary solutions and Karush–Kuhn–Tucker points in nonlinear optimization. Ann. Oper. Res. 27 (1990), 285–307. DOI 10.1007/BF02055199 | MR 1088996 | Zbl 0746.90070
[20] Kojima, M.: Strongly stable stationary solutions in nonlinear programs. In: Analysis and Computation of Fixed Points (S. M. Robinson, ed.), Academic Press, New York 1980, pp. 93–138. MR 0592631 | Zbl 0478.90062
[21] Kummer, B.: Newton’s method for non-differentiable functions. In: Advances in Math. Optimization (J. Guddat et al., eds.), Akademie Verlag, Berlin 1988, pp. 114–125. Zbl 0662.65050
[22] Kummer, B.: Lipschitzian inverse functions, directional derivatives and application in $ {C}^{1,1} $ optimization. J. Optim. Theory Appl. 70 (1991), 559–580. DOI 10.1007/BF00941302 | MR 1124778
[23] Kummer, B.: An implicit function theorem for $ {C}^{0,1} $-equations and parametric $ {C}^{1,1} $-optimization. J. Math. Anal. Appl. 158 (1991), 35–46. DOI 10.1016/0022-247X(91)90264-Z | MR 1113397
[24] Kummer, B.: Newton’s method based on generalized derivatives for nonsmooth functions: convergence analysis. In: Advances in Optimization (W. Oettli and D. Pallaschke, eds.), Springer, Berlin 1992, pp. 171–194. MR 1229731 | Zbl 0768.49012
[25] Kummer, B.: Generalized Newton and NCP-methods: Convergence, regularity, actions. Discuss. Math. – Differential Inclusions 20 (2000), 209–244. DOI 10.7151/dmdico.1013 | MR 1815097 | Zbl 1016.90058
[26] Kummer, B.: Inclusions in Banach spaces: Hoelder stability, solution schemes and Ekeland’s principle. J. Math. Anal. Appl. 358 (2009), 327–344. DOI 10.1016/j.jmaa.2009.04.060 | MR 2532510
[27] Minchenko, L. I.: Multivalued analysis and differential properties of multivalued mappings and marginal functions. J. Math. Sci. 116 (2003), 93–138. DOI 10.1023/A:1023669004408 | MR 1995436
[28] Poliquin, R. A., Rockafellar, R. T.: Tilt stability of a local minimum. SIAM J. Optim. 8 (1998), 287-299. DOI 10.1137/S1052623496309296 | MR 1618790 | Zbl 0918.49016
[29] Robinson, S. M.: Strongly regular generalized equations. Math. Oper. Res. 5 (1980), 43–62. DOI 10.1287/moor.5.1.43 | MR 0561153 | Zbl 0437.90094
[30] Rockafellar, R. T., Wets, R. J.-B.: Variational Analysis. Springer, Berlin 1998. MR 1491362 | Zbl 0888.49001
[31] Scholtes, S.: Introduction to Piecewise Differentiable Equations. Preprint No. 53/1994. Institut für Statistik und Math. Wirtschaftstheorie, Universität Karlsruhe, 1994.
[32] Stein, O.: Bi-level Strategies in Semi-infinite Programming. Kluwer, Dordrecht – Boston – London 2003. MR 2025879 | Zbl 1103.90094
[33] Sydsaeter, K., Hammond, P., Seierstad, A., Strom, A.: Further Mathematics for Economic Analysis. Prentice Hall, 2005.
[34] Thibault, L.: Subdifferentials of compactly Lipschitz vector-valued functions. Ann. Mat. Pura Appl. 4 (1980), 157–192. DOI 10.1007/BF01789411 | MR 0605208
[35] Varian, H.: Microeconomic Analysis. Third edition. W. W. Norton, New York 1992.
Partner of
EuDML logo