[1] Bonnans, J. F., Shapiro, A.:
Perturbation Analysis of Optimization Problems. Springer, New York 2000.
MR 1756264 |
Zbl 0966.49001
[3] Bütikofer, St., Klatte, D.: A nonsmooth Newton method with path search and its use in solving $C^{1,1}$ programs and semi-infinite problems. Manuscript, February 2009.
[5] Dempe, S.:
Foundations of Bilevel Programming. Kluwer, Dordrecht – Boston – London 2002.
MR 1921449 |
Zbl 1038.90097
[6] Demyanov, V. F., Malozemov, V. N.:
Introduction to Minimax. Wiley, New York 1974.
MR 0475823
[7] Facchinei, F., Pang, J.-S.: Finite-Dimensional Variational Inequalities and Complementarity Problems, Volumes I, II. Springer, New York 2003.
[8] Fiacco, A. V.:
Introduction to Sensitivity and Stability Analysis. Academic Press, New York 1983.
MR 0721641 |
Zbl 0543.90075
[10] Gauvin, J.: Theory of Nonconvex Programming. Les Publications CRM, Montreal 1994.
[11] Golstein, E. G.:
Theory of Convex Programming. (Trans. Math. Monographs 36.) American Mathematical Society, Providence 1972.
MR 0359802
[12] Hiriart-Urruty, J.-B., Strodiot, J. J., Nguyen, V. Hien:
Generalized Hessian matrix and second order optimality conditions for problems with $ {C}^{1,1} $-data. Appl. Math. Optim. 11 (1984), 43–56.
DOI 10.1007/BF01442169 |
MR 0726975
[15] Klatte, D.:
On quantitative stability for non-isolated minima. Control and Cybernetics 23 (1994), 183–200.
MR 1284514 |
Zbl 0808.90120
[17] Klatte, D., Kummer, B.:
Nonsmooth Equations in Optimization – Regularity, Calculus, Methods and Applications. Kluwer, Dordrecht – Boston – London 2002.
MR 1909427 |
Zbl 1173.49300
[20] Kojima, M.:
Strongly stable stationary solutions in nonlinear programs. In: Analysis and Computation of Fixed Points (S. M. Robinson, ed.), Academic Press, New York 1980, pp. 93–138.
MR 0592631 |
Zbl 0478.90062
[21] Kummer, B.:
Newton’s method for non-differentiable functions. In: Advances in Math. Optimization (J. Guddat et al., eds.), Akademie Verlag, Berlin 1988, pp. 114–125.
Zbl 0662.65050
[22] Kummer, B.:
Lipschitzian inverse functions, directional derivatives and application in $ {C}^{1,1} $ optimization. J. Optim. Theory Appl. 70 (1991), 559–580.
DOI 10.1007/BF00941302 |
MR 1124778
[24] Kummer, B.:
Newton’s method based on generalized derivatives for nonsmooth functions: convergence analysis. In: Advances in Optimization (W. Oettli and D. Pallaschke, eds.), Springer, Berlin 1992, pp. 171–194.
MR 1229731 |
Zbl 0768.49012
[27] Minchenko, L. I.:
Multivalued analysis and differential properties of multivalued mappings and marginal functions. J. Math. Sci. 116 (2003), 93–138.
DOI 10.1023/A:1023669004408 |
MR 1995436
[31] Scholtes, S.: Introduction to Piecewise Differentiable Equations. Preprint No. 53/1994. Institut für Statistik und Math. Wirtschaftstheorie, Universität Karlsruhe, 1994.
[32] Stein, O.:
Bi-level Strategies in Semi-infinite Programming. Kluwer, Dordrecht – Boston – London 2003.
MR 2025879 |
Zbl 1103.90094
[33] Sydsaeter, K., Hammond, P., Seierstad, A., Strom, A.: Further Mathematics for Economic Analysis. Prentice Hall, 2005.
[35] Varian, H.: Microeconomic Analysis. Third edition. W. W. Norton, New York 1992.